Extracting and smoothing contours in mammograms using Fourier descriptors

HTML  Download Download as PDF (Size: 1019KB)  PP. 119-129  
DOI: 10.4236/jbise.2014.73017    4,288 Downloads   7,076 Views  Citations

ABSTRACT

Contour is an important pattern descriptor in image processing and particularly in region description, registration and length estimation. In many applications where contour is used, a good segmentation and an efficient smoothing method are needed. In X-ray images, such as mammograms, where object edge is not clearly discernible, estimating the object’s contour may yield substantial shift along the boundary due to noise or segmentation drawbacks. An appropriate smoothing is therefore required to reduce these effects. In this paper, an approach based on local adaptive threshold segmentation to extract contour and a new smoothing approach founded on Fourier descriptors are introduced. The experimental results of extraction obtained from a set of mammograms and compared with the breast regions delineated by radiologists yielded a percent overlap area of 98.7% ± 0.9% with false positive and negative rates of 0.36 ± 0.74 and 0.93 ± 0.44 respectively. The proposed method was tested on a set of images and improved the accuracy, leading to an average error of less than one pixel.

Share and Cite:

Feudjio, C. , Tiedeu, A. , Noubeg, M. , Gordan, M. , Vlaicu, A. and Domngang, S. (2014) Extracting and smoothing contours in mammograms using Fourier descriptors. Journal of Biomedical Science and Engineering, 7, 119-129. doi: 10.4236/jbise.2014.73017.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.