A Green Approach towards the Synthesis of Enantio Pure Diols Using Horse Radish Peroxidase Enzyme Immobilized on Magnetic Nanoparticles

HTML  XML Download Download as PDF (Size: 784KB)  PP. 15-19  
DOI: 10.4236/gsc.2014.41003    4,341 Downloads   7,019 Views  Citations

ABSTRACT

Enantiopure epoxides and their corresponding chiral vicinal diols serve as valuable intermediates in the synthesis of biologically active pharma and agro-compounds and also value added fine chemicals. Biocatalysts are well known for their selective hydrolysis of racemic epoxides to give optically pure chiral diols. This study highlights an efficient process of synthesis of chiral vicinal diols in good yields and enantioselectiviy using horse radish peroxidase enzyme immobilized on the amine functionalized magnetic nano particles (Fe3O4 nanoparticles) as enzyme carriers. It also facilitates separation of MNP-immobilized enzymes by applying external magnetic field. The immobilization of magnetic nano particles was confirmed by transmission electron microscope (TEM) and scanning electron microscope (SEM). The MNP-immobilized peroxidase enzyme improved stability of the enzyme and has shown broader substrate specificity in enantioselective hydrolysis of racemic epoxides, under mild and environmentally friendly conditions. The methodology MNP-immobilized enzyme developed in the synthesis of chiral diols has a potential for use in large-scale applications.

Share and Cite:

S. Siva Deepthi, E. Prasad, B. Venkata Subba Reddy, B. Sreedhar and A. Bhaskar Rao, "A Green Approach towards the Synthesis of Enantio Pure Diols Using Horse Radish Peroxidase Enzyme Immobilized on Magnetic Nanoparticles," Green and Sustainable Chemistry, Vol. 4 No. 1, 2014, pp. 15-19. doi: 10.4236/gsc.2014.41003.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.