Linear Plus Linear Fractional Capacitated Transportation Problem with Restricted Flow

HTML  Download Download as PDF (Size: 154KB)  PP. 581-588  
DOI: 10.4236/ajor.2013.36055    4,385 Downloads   7,023 Views  Citations

ABSTRACT

In this paper, a transportation problem with an objective function as the sum of a linear and fractional function is considered. The linear function represents the total transportation cost incurred when the goods are shipped from various sources to the destinations and the fractional function gives the ratio of sales tax to the total public expenditure. Our objective is to determine the transportation schedule which minimizes the sum of total transportation cost and ratio of total sales tax paid to the total public expenditure. Sometimes, situations arise where either reserve stocks have to be kept at the supply points, for emergencies or there may be extra demand in the markets. In such situations, the total flow needs to be controlled or enhanced. In this paper, a special class of transportation problems is studied where in the total transportation flow is restricted to a known specified level. A related transportation problem is formulated and it is shown that to each basic feasible solution which is called corner feasible solution to related transportation problem, there is a corresponding feasible solution to this restricted flow problem. The optimal solution to restricted flow problem may be obtained from the optimal solution to related transportation problem. An algorithm is presented to solve a capacitated linear plus linear fractional transportation problem with restricted flow. The algorithm is supported by a real life example of a manufacturing company.

Share and Cite:

K. Gupta and S. Arora, "Linear Plus Linear Fractional Capacitated Transportation Problem with Restricted Flow," American Journal of Operations Research, Vol. 3 No. 6, 2013, pp. 581-588. doi: 10.4236/ajor.2013.36055.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.