Usefulness of Agarose Mold as a Storage Container for Three-Dimensional Tissue-Engineered Cartilage

HTML  XML Download Download as PDF (Size: 502KB)  PP. 73-78  
DOI: 10.4236/msa.2013.48A010    4,033 Downloads   6,243 Views  Citations

ABSTRACT

The efficiency of substance exchange may be decreased when the thickness and volume of such a tissue-engineered cartilage that is composed of cultured cells and porous scaffold increase. Moreover, during the transport of this construct with complicated shapes, excessive and focal mechanical loading may cause deformation. The establishment of incubation and transport methods is necessary for the three-dimensional tissue-engineered cartilage. Therefore, we investigated the preparation of an agarose mold with a concavity similar to the shape of 3-dimensional tissue-engineered cartilage to prevent excessive and focal concentration of stress, while avoiding interference with substance exchange as much as possible. Firstly, we investigated the preparation at 1% - 4% agarose concentrations. Since the mechanical strength was insufficient at 1%, 2% was regarded as appropriate. Using 2% agarose, we prepared a mold with a 5 × 5 × 5 mm concavity to accommodate tissue-engineered cartilage (5 × 5 × 5 mm mixture of 1.5 × 107 cells and collagen gel), and stored the regenerative cartilage in it for 2 and 24 hours. On comparison with storage in a plastic mold with the same shape in which substance exchanged from side and bottom was impossible, although no significant differences were noted in the number or viability of cells after 2 hours, these were markedly reduced in the plastic mold after 24 hours. It was confirmed that favorable cell numbers and viability were maintained by immediately retaining the regenerative cartilage in the culture medium in the agarose mold and keeping the temperature at 37°C. Since this agarose mold also buffers against mechanical forces loaded on the three-dimensional regenerative tissue, it may be useful as a container for storage and transport of large-sized three-dimensional regenerative tissue.

Share and Cite:

Y. Mori, S. Kanazawa, M. Watanabe, H. Suenaga, K. Okubo, S. Nagata, Y. Fujihara, T. Takato and K. Hoshi, "Usefulness of Agarose Mold as a Storage Container for Three-Dimensional Tissue-Engineered Cartilage," Materials Sciences and Applications, Vol. 4 No. 8A, 2013, pp. 73-78. doi: 10.4236/msa.2013.48A010.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.