Grade Dependent Expression of Growth Factor Receptors and Signaling Molecules in Breast Cancer

HTML  Download Download as PDF (Size: 3363KB)  PP. 21-31  
DOI: 10.4236/jct.2013.47A005    2,977 Downloads   4,724 Views  Citations

ABSTRACT

Growth factor signaling plays a key role in the growth and development of breast. Aberrant expression and activation of growth factors like insulin like growth factor-I (IGF-I) and epidermal growth factor (EGF) and their downstream signaling has been implicated in breast cancer. The deregulation of growth factor signaling is associated with increased proliferation and cell survival, decreased apoptosis, invasion, angiogenesis and metastasis. The aim of the present study is to survey the different signaling molecules involved in the IGF and EGF signaling pathways, and to find if there are any relationship between breast cancer and their levels and activation. Thirty-nine samples of breast cancer tissues (24 Grade II and 15 Grade III tumours) and sixteen normal breast tissue samples were collected. The expression of the receptors and signaling molecules were investigated using Western blot. IGF-IRβ, AR, pAkt, IKK-α and p38 are upregulated in cancer tissues in a grade depended manner. Further, Akt and β-catenin were also upregulated in cancer samples. Correlation analysis of signaling molecules revealed a disruption in their expression in cancer tissues. The present study shows that various signaling molecules are upregulated or activated in cancer tissues involving IGF-IR and Akt pathway. The expression of signaling molecules in the cancer tissues were deregulated when compared to the control samples. Thus, flawed expression and over activation of Akt pathway is seen in the breast cancer tissues.

Share and Cite:

C. Benson, S. Babu, S. Radhakrishna, N. Selvamurugan and B. Sankar, "Grade Dependent Expression of Growth Factor Receptors and Signaling Molecules in Breast Cancer," Journal of Cancer Therapy, Vol. 4 No. 7A, 2013, pp. 21-31. doi: 10.4236/jct.2013.47A005.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.