Optimal Immunotherapy Control of Aggressive Tumors Growth

HTML  Download Download as PDF (Size: 1142KB)  PP. 168-175  
DOI: 10.4236/ica.2012.32019    3,461 Downloads   5,280 Views  Citations

ABSTRACT

Tumor cells can evade immune surveillance by secreting immuno-suppressive factors such as transforming growth factor-beta (TGF-β) and also, Interlukin-10 (IL-10). In this paper the optimal control of mathematical model for aggressive tumor growth via a new and proper approach known as AVK method has been considered. Moreover, we have implemented a special treatment so-called small interfering RNA (siRNA) to reduce presence and effect of TGF-β in tumor cells and also we have added Interlukin-2 (IL-2) into our treatment model to minimize the population of tumor cells. Further research and experimentation with these combination therapies may provide an effective solution in addressing the immuno-suppressive effects of TGF-β. Finally, we analyze the optimal control and system optimality of these equations using numerical techniques.

Share and Cite:

E. Kiani, A. Kamyad and H. Shirzad, "Optimal Immunotherapy Control of Aggressive Tumors Growth," Intelligent Control and Automation, Vol. 3 No. 2, 2012, pp. 168-175. doi: 10.4236/ica.2012.32019.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.