Dr. Ka Chi Lam
City University of Hong Kong, China
Email: bckclam@cityu.edu.hk
Qualifications
Ph.D., University of New South Wales, Australia
M.Sc., University of Manchester Institute of Science and Technology (UMIST), Britain
B.Sc., National Taiwan University, China
Publications (Selected)
-
Oshodi, O., Edwards, D. J., Lam, K. C., Olanipekun, A. O., & Aigbavboa, C. O. (2020). Construction output modelling: a systematic review. Engineering, construction and architectural management, 27(10), 2959-2991.
-
Idowu, O. S., & Lam, K. C. (2020). Conceptual quantities estimation using bootstrapped support vector regression models. Journal of Construction Engineering and Management, 146(4), 04020018.
-
Idowu, O. S., & Lam, K. C. (2019). Web-based application for predesign cost planning of vertical building envelopes. Automation in Construction, 106, 102909.
-
Oshodi, O. S., & Lam, K. C. (2018). Using an adaptive neuro-fuzzy inference system for tender price index forecasting: A univariate approach. In Fuzzy hybrid computing in construction engineering and management (pp. 389-411). Emerald Publishing Limited.
-
Lam, K. C., & Idowu, O. S. (2017, December). Modelling Conceptual Quantities Using Support Vector Machines. In International Conference on Construction and Quantity Surveying 2017 (ICCQS 2017).
-
Banks, S. J., Chan, D. H., Lee, K. H., & Lam, K. C. (2017). Triaxial testing of kaolin-cement mixture: Laboratory program and preliminary results. In Soft Soil Engineering (pp. 545-550). Routledge.
-
Ejohwomu, O. A., Oshodi, O. S., & Lam, K. C. (2017). Nigeria’s construction industry: barriers to effective communication. Engineering, Construction and Architectural Management, 24(4), 652-667.
-
Lam, K. C., & Oshodi, O. S. (2016). Using univariate models for construction output forecasting: Comparing artificial intelligence and econometric techniques. Journal of Management in Engineering, 32(6), 04016021.
-
Lam, K. C., & Oshodi, O. S. (2016). Forecasting construction output: a comparison of artificial neural network and Box-Jenkins model. Engineering, Construction and Architectural Management, 23(3), 302-322.
-
Lam, K. C., Oshodi, O. S., & Lee, E. W. M. (2016, February). Forecasting construction demand: A comparison of Box-Jenkins and Support Vector machine model. In Proceedings of the 9th Construction Industry Development Board (CIDB) Postgraduate Conference (pp. 14-23).
-
Lam, K. C., & Oshodi, O. S. (2015). The capital budgeting evaluation practices (2014) of contractors in the Hong Kong construction industry. Construction Management and Economics, 33(7), 587-600.
-
Yung, P., Lam, K. C., & Yu, C. (2015). Impacts of placement and work experience on construction education. International Journal of Construction Project Management, 7(1), 33.
-
Yu, C., & Lam, K. C. (2014). Applying multiple kernel learning and support vector machine for solving the multicriteria and nonlinearity problems of traffic flow prediction. Journal of Advanced Transportation, 48(3), 250-271.
-
Yu, C., Lam, K. C., & Yung, P. (2014). Factors that influence the concession period length for tunnel projects under BOT contracts. Journal of Management in Engineering, 30(1), 108-121.
Profile Details
https://scholars.cityu.edu.hk/en/persons/ka-chi-lam(c525ddd0-35a3-4435-ba7c-e0d87f810d7d).html
https://orcid.org/0000-0002-4573-6631
https://www.scopus.com/authid/detail.uri?authorId=35324530300
https://scholar.google.com/citations?user=hIwQg0QAAAAJ&hl=en