Random Crank-Nicolson Scheme for Random Heat Equation in Mean Square Sense ()
Received 2 February 2016; accepted 5 February 2016; published 3 June 2016
1. Introduction
The goal of computational science is to develop models that predict phenomena observed in nature. However, these models are often based on parameters that are uncertain. In recent decades, main numerical methods for solving SPDEs have been used such as, finite difference and finite element schemes [1] - [5] . Also, some practical techniques like the method of lines for boundary value problems have been applied to the linear stochastic partial differential equations, and the outcomes of these approaches have been experimented numerically [7] . In [8] - [10] , the author discussed mean square convergent finite difference method for solving some random partial differential equations. Random numerical techniques for both ordinary and partial random differential equations are treated in [4] [10] . As regards applications using explicit analytic solutions or numerical methods, a few results may be found in [5] [6] [11] . This article focuses on solving random heat equation by using Crank-Nicol- son technique under mean square sense and it is organized as follows. In Section 2, the mean square calculus preliminaries that will be required throughout the paper are presented. In Section 3, the Crank-Nicolson scheme for solving the random heat equation is presented. In Section 4, some case studies are showed. Short conclusions are cleared in the end section.
2. Preliminaries
Definition 2.1. Let us take in to consideration that, the properties of a class of real random variables
whose second moments, are finite. In this case they are
called second order random variables.
Definition 2.2. A sequence of is mean square convergent to a random variable X if:
3. Random Crank-Nicolson Scheme (RCNS)
If we have the linear random heat problem of the form:
(1)
Where is a second order random variable.
(2)
(3)
Then, we can find the random Crank-Nicolson scheme for this problem as follows:
Take a uniform mesh with step size and on x-axis and t-axis respectively. Additionally, Let approximates u(x, t) at point. Hence. On this mesh we have:
Then,
Similarly,
Then,
Hence for (1):
Put
Hence, the RCNS for our problem is:
(4)
(5)
(6)
3.1. Consistency of RCNS
We can rewrite the above scheme as:
The above scheme is a random Crank-Nicolson version of (1 - 3). For a RPDE, say Lv = G where L is a differentiable operator and. On the other hand, we represent finite difference scheme at the point by.
Definition 3.1.1. A random difference scheme that approximating RPDE Lv = G is consistent in mean square sense at time, if for any continuously differentiable function, we have in mean square:
As and
Theorem 3.1.1. The random Crank-Nicolson difference scheme (4)-(6) with second order random variable is to be consistent in mean square sense as: and.
Proof. Assume that is a deterministic smooth function then:
Then,
As:, and at time, Then we have
Hence, the random Crank-Nicolson scheme (4)-(6) is consistent in mean square sense.∎
3.2. Exponential Stability Analysis of RCNS
Definition 3.2.1. A random Crank-Nicolson difference scheme is exponential stable in mean square if there exist some positive constants a, c and constants k, b. Such that:
For: and
Theorem 3.2.1. The random Crank-Nicolson scheme (4)-(6) with second order random variable is unconditionally stable in mean square sense as with k = 1 and b = 0.
Proof: Since,
Then,
Finally, we have:
At: then, we have:
Hence, the random Crank-Nicolson difference scheme with second order random variable is unconditionally stable with and. ∎
3.3. Convergence of RCNS
Definition 3.3.1. A random difference scheme that approximating RPDE Lv = G is convergent in mean square sense at time, if:
, as and
Theorem 3.3.1. The random Crank-Nicolson difference scheme (4)-(6) with second order random variables is convergent in mean square sense.
Proof.
Since, the RCNS is consistent and unconditionally exponential stable, thus, the scheme (4)-(6) is convergent in mean square sense.∎
4. Case Studies
Consider the linear random parabolic partial differential equation:
With initial condition
(7)
and the boundary conditions
And is a second order random variable.
4.1. The Exact Relation
(8)
4.2. The Numerical Solution
The Random Crank-Nicolson Difference Scheme for this problem is
(9)
where, and
Substituting by in (9) we have:
Putting n = 0 in the above system then we have:
Then, we have the system:
From this system we have:
Verification for the Convergence of Mean
(1) Changing step size
・ Choosing:
・ Choosing:
(2) Changing step size
・ Choosing:
・ Choosing:
(3) Changing the expectations
・ Choosing:
・ Choosing:
From these tables we note that the error is acceptable if:
1) The changing happens in when are constant values.
2) The changing happens in when are constant values.
3) The changing happens in when are constant values.
5. Conclusion
The random heat equation can be solved numerically by using mean square convergent Crank-Nicolson scheme. The random variable in the Crank-Nicolson scheme is must second order random variable and the random Crank-Nicolson scheme is unconditionally stable in the area of mean square sense. Many complicated equations in linear and nonlinear parabolic partial differential problems can be discussed using finite difference schemes in mean square sense.