The I550V polymorphism in the renal human sodium/dicarboxylate cotransporter 1 (hNaDC-1) gene is associated with the risk for urolithiasis in adults from Southeastern, Mexico

Abstract

Urolithiasis (UL) is an endemic disease in Southeastern, Mexico. In order to evaluate the association of I550V polymorphism in the hNaDC-1 gene with risk for hypocitraturia and/or for UL; 139 adults with UL and 132 adults without UL, were included under a case-control association study. Citrate levels in 24-h urine were quantified (citraturia). The polymorphism I550V-hNaDC-1 was determined by PCR-RFLP. Statistical analysis was performed using the STATA10.2 software. Comparison of genotype and allele frequencies between subjects with and without UL showed significant differences for genotype bb (OR = 2.34, CI: 1.19-4.59, p = 0.01) and for allele b (OR = 1.62, CI: 1.15-2.28, p = 0.005), suggesting an association with the risk for UL. Comparison of genotype and allele frequencies between subjects with hypocitraturia and subjects with normocitraturia, did not show any significant difference (p > 0.05), suggesting that this polymorphism is not associated with the risk of hypocitraturia. Interestingly, the risk for UL was increased due to an additive effect of hypocitraturia with the genotype bb (OR = 6.6, CI: 2.38-18.28, p = 0.0002) or with the allele b (OR: 4.2, CI = 2.52-6.97, p < 0.0001) in the studied population.

Share and Cite:

Medina-Escobedo, M. , Franco-Bocanegra, D. , Villanueva-Jorge, S. and González-Herrera, L. (2013) The I550V polymorphism in the renal human sodium/dicarboxylate cotransporter 1 (hNaDC-1) gene is associated with the risk for urolithiasis in adults from Southeastern, Mexico. Open Journal of Genetics, 3, 59-66. doi: 10.4236/ojgen.2013.32A3009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Medina-Escobedo, M.M., Zaidi, M., Real-de-León, E. and Orozco-Rivadeneyra, S. (2002) Prevalencia y factores de riesgo en Yucatán, México, para litiasis urinaria. Salud Pública de México, 44, 541-545. doi:10.1590/S0036-36342002000600006
[2] Arrabal, M., Fernández, A., Arrabal, M.A., Ruiz, M.J. and Zuluaga, A. (2006) Estudio de factores físico-químicos en pacientes con litiasis renal. Archivos Espanoles de Urología, 59, 583-594.
[3] Villanueva-Jorge, S., Medina-Escobedo, M.M. and Arcos, A. (2007) Excreción de oxalatos y citratos en adultos con litiasis urinaria. Bioquimia, 32, 134-140.
[4] Akcay, T., Konukoglu, D. and Celik, C. (1996) Hypocitraturia in patients with urolithiasis. Archives of Disease in Childhood, 74, 350-351. doi:10.1136/adc.74.4.350
[5] Gambaro, G., Fabris, A., Puliatta, D. and Lupo, A. (2005) Lithiasis in cystic kidney disease and malformations of the urinary tract. Urological Research, 34, 102-107. doi:10.1007/s00240-005-0019-z
[6] Spivacow, F.R., Valle, E.E. and Zanchetta, J.R. (2006) Litiasis renal. Modificaciones bioquímicas durante el seguimiento. Medicina, 66, 201-205.
[7] Deshmukh, S.R. and Kahn, Z.H. (2006) Evaluation of urinary abnormalities in nephrolithiasis patients of Marathwada region. Indian Journal of Clinical Biochemistry, 21, 177-180. doi:10.1007/BF02913091
[8] Fan, J., Schwille, P.O., Schmiedl, A., Fink, E. and Manoharan, M. (2001) Calcium oxalate crystallization in undilluted postprandial urine of healthy male volunteers as influenced by citrate. Arzneimittel-Forschung, 51, 848-857.
[9] Pajor, A.M. (1996) Molecular cloning and functional expression of a sodium-dicarboxylate cotransporter from human kidney. American Journal of Physiology, 270, F642-F648.
[10] Pajor, A.M. and Sun, N.N. (2000) Molecular cloning, chromosomal organization and functional characterization of a sodium-dicarboxylatecotransporter from mouse kidney. Renal Physiology: American Journal of Physiology, 279, F482-F490.
[11] Pajor, A.M. (2006) Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters. Pflügers Archiv, 451, 597-605. doi:10.1007/s00424-005-1487-2
[12] Pajor, A.M. and Sun, N.N. (2010) Single nucleotide polymorphisms in the human Na+-dicarboxylate co-transporter affect transport activity and protein expression. Renal Physiology: American Journal of Physiology, 299, F704-F711. doi:10.1152/ajprenal.00213.2010
[13] Okamoto, N., Aruga, S., Matsuzaki, S., Takahashi, S., Matsushita, K. and Kitamura, T. (2007) Associations between renal sodium-citrate cotransporter (hNaDC-1) gene polymorphism and urinary citrate excretion in recurrent renal calcium stone formers and normal controls. International Journal of Urology, 14, 344-349. doi:10.1111/j.1442-2042.2007.01554.x
[14] González-Herrera, L., Vega-Navarrete, L., Roche-Canto, C., Canto-Herrera, J., Virgen-Ponce, D., Moscoso-Caloca, G., et al. (2010) Forensic parameters and genetic variation of 15 autosomal STR Loci in Mexican Mestizo populations from the States of Yucatan and Nayarit. Open Forensic Science Journal, 3, 57-63.
[15] Gotsman, I., Zwas, D., Planer, D., Admon, D., Lotan, C. and Keren, A. (2010) The significance of serum urea and renal function in patients with heart failure. Medicine, 89, 197-203. doi:10.1097/MD.0b013e3181e893ee
[16] Perrone, R.D., Madias, N.E. and Levey, A.S. (1992) Serum creatinine as an index of renal function: New insights into old concepts. Clinical Chemistry, 38, 1933-1953.
[17] Blin, N. and Stafford, D.W. (1976) A general method for isolation of high molecular weight DNA. Nucleic Acids Research, 3, 2303-2308. doi:10.1093/nar/3.9.2303
[18] Hamm, L.L. (1990) Renal handling of citrate. Kidney International, 38, 728-735. doi:10.1038/ki.1990.265
[19] Rolston, D.D., Moriarty, K.J., Farthing, M.J., Kelly, M.J., Clark, M.L. and Dawspm, A.M. (1986) Acetate and citrate stimulate water and sodium absorption in the human jejunum. Digestion, 34, 101-104. doi:10.1159/000199317
[20] Rudman, D., Dedonis, J.L., Fountain, M.T., Chandler, J.B., Gerron, G.G., Fleming, G.A., et al. (1980) Hypocitraturia in patients with gastrointestinal malabsorption. New England Journal of Medicine, 303, 657-661. doi:10.1056/NEJM198009183031201
[21] Yao, X. and Pajor, A.M. (2000) The transport properties of the human renal Na+-dicarboxylate cotransporter under voltage-clamp conditions. Renal Physiology: American Journal of Physiology, 279, 54-64.
[22] Aruga, S., Pajor, A.M., Nakamura, K., Liu, L., Moe, O.W., Preisig, P.A., et al. (2004) OKP cells express the Na-dicarboxylate cotransporter NaDC-1. Cell Physiology: American Journal of Physiology, 287, C64-C72. doi:10.1152/ajpcell.00061.2003
[23] Reich, D.E., Cargill, M., Bolk, S., Ireland, J., Sabeti, P.C., Richter, D.J., et al. (2001) Linkage disequilibrium in the human genome. Nature, 411, 199-204. doi:10.1038/35075590
[24] van Vliet, J., Oates, N.A. and Whitelaw, E. (2007) Epigenetic mechanisms in the context of complex diseases. Cellular and Molecular Life Sciences, 64, 1531-1538. doi:10.1007/s00018-007-6526-z
[25] Healy, K.A. and Ogan, K. (2005) Nonsurgical management of urolithiasis: An overview of expulsive therapy. Journal of Endourology, 19, 759-767. doi:10.1089/end.2005.19.759
[26] Clayton, D. and McKeigue, P.M, (2001) Epidemiological methods for studying genes and environmental factors in complex diseases. The Lancet, 358, 1356-1360. doi:10.1016/S0140-6736(01)06418-2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.