Share This Article:

Consequences of a Godel’s Misjudgment

DOI: 10.4236/oalib.1101820    522 Downloads   723 Views   Citations

ABSTRACT

The fundamental aim of the paper is to correct a harmful way to interpret a Godel’s erroneous remark at the Congress of Konigsberg in 1930. Although the Godel’s fault is rather venial, its misreading has produced and continues to produce dangerous fruits, so as to apply the incompleteness Theorems to the full second-order Arithmetic and to deduce the semantic incompleteness of its language by these same Theorems. The first three paragraphs are introductory and serve to define the languages inherently semantic and its properties, to discuss the consequences of the expression order used in a language and some questions about the semantic completeness. In particular, it is highlighted that a non-formal theory may be semantically complete despite using a language semantically incomplete. Finally, an alternative interpretation for the Godel’s unfortunate comment is proposed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Raguní, G. (2015) Consequences of a Godel’s Misjudgment. Open Access Library Journal, 2, 1-12. doi: 10.4236/oalib.1101820.

References

[1] Lewis, C.I. (1918) A Survey of Formal Logic. Berkeley University of California Press, Berkeley, 355.
[2] Feferman, et al. (1986) Kurt Gödel Collected Works. Vol. I, Oxford University Press, Oxford, 44-48.
[3] Gabriel, G., et al. (1980) Frege: Philosophical and Mathematical Correspondence. Blackwell Publishers, Oxford.
[4] Turing, A.M. (1937) On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society II, 42, 230-265.
http://dx.doi.org/10.1112/plms/s2-42.1.230
[5] Gödel, K. (1931) On Formally Undecidable Propositions of Principia Mathematica and Related System I, doc. 1931. In: Feferman, et al., Eds., Kurt Gödel Collected Works, Vol. I, Oxford University Press, Oxford, 195.
[6] Russell, B. and Whitehead, A.N. (1913) Principia Mathematica. Cambridge University Press, Cambridge.
[7] Gödel, K. (1929-1930) docs. 1929 and 1930. In: Feferman, et al., Eds., op. cit., Vol. I, Oxford University Press, Oxford, 61, 103.
[8] Henkin, L. (1949) The Completeness of the First-Order Functional Calculus. The Journal of Symbolic Logic, 14, 159-166.
http://dx.doi.org/10.2307/2267044
[9] Shapiro, S. (2002) Foundations without Foundationalism: A Case for Second-Order Logic. Oxford University Press, Oxford, 82, 112.
[10] Raguní, G. (2010) I confini logici della matematica, ed. Aracne Roma, 144-145, 232-233.
[11] Rossberg, M. (2004) First-Order Logic, Second-Order Logic and Completeness. Logos Verlag, Berlin.
http://www.st-andrews.ac.uk/~mr30/papers/RossbergCompleteness.pdf
[12] Lindström, P. (1969) On Extensions of Elementary Logic, Theoria, 35.
[13] Shapiro, S. (2002) Foundations without Foundationalism: A Case for Second-Order Logic. Oxford University Press, Oxford, 112.
[14] Skolem, T. (1933) über die Unmoglichkeit..., Norsk matematisk forenings skrifter, Series II, 10, 73-82. Reprinted in: Fenstad, J.E. (1970) Selected Works in Logic, Oslo University, Oslo, 345-354.
[15] Feferman, et al. (1995) op. cit. Volume III, Oxford University Press, Oxford, 439. In the textual notes is written: “The copy-text for *1930c [...] was one of several items in an envelope that Gödel labelled “Manuskripte Korrekt der 3 Arbeiten in Mo[nats]H[efte] + Wiener Vorträge über die ersten zwei” (manuscripts, proofs for the three papers in Monatshefte [1930, 1931, and 1933i] plus Vienna lectures on the first two.) On the basis of that label, *1930c ought to be the text of Gödel’s presentation to Menger’s colloquium on 14 May 1930—the only occasion, aside from the meeting in Königsberg, on which Gödel is known to have lectured on his dissertation results [...]. Internal evidence, however, especially the reference on the last page to the incompleteness discovery, suggests that the text must be that of the later talk. Since no other lecture text on this topic has been found, it may well be that Gödel used the same basic text on both occasions, with a few later additions”.
[16] Gödel, K. (1930) doc. 1930. In: Feferman, et al., Eds., op. cit., Volume I, Oxford University Press, Oxford, 103, Footnote No. 3.
[17] Gödel, K. (1930) doc. 1930c. In: Feferman, et al., Eds., op. cit., Volume III, Oxford University Press, Oxford, 27-29.
[18] Hilbert, D. and Ackermann, W. (1950) Principles of Mathematical Logic. Chelsea, New York, 130.
[19] Goldfarb, W. (1986) Introductory Note to 1930c. In: Feferman, et al., Eds., op. cit., Volume III, Oxford University Press, Oxford, 14-15.
[20] Hintikka, J. (2000) On Gödel, Wadsworth Philosophers Series, 22.
[21] Shapiro, S. (1999) Do Not Claim Too Much: Second-Order Logic and First-Order Logic. Philosophia Mathematica, 7, 43.
[22] Gödel, K. (1931) doc.1931. In: Feferman, et al., Eds., op. cit., Volume I, Oxford University Press, Oxford, 187. The purpose is simply to be able to express formulas such as ∀x(f(x)), where f is a recursive function, which strictly are not permitted in the first-order classical Logic.
[23] Gödel, K. (1932) doc. 1932b. In: Feferman, et al., Eds., op. cit., Volume I, Oxford University Press, Oxford, 237.
[24] Gödel, K. (1934) doc. 1934. In: Feferman, et al., Eds., op. cit., Volume I, Oxford University Press, Oxford, 353-354.
[25] Gödel, K. (1934) doc. 1934. In: Feferman, et al., Eds., op. cit., Volume I, Oxford University Press, Oxford, 350 and 355.
[26] Kleene, S.C. (1986) Introductory Note to 1934. In: Feferman, et al., Eds., op. cit., Volume I, Oxford University Press, Oxford, 339.
[27] Gödel, K. (1930) doc. 1930b. In: Feferman, et al., Eds., op. cit., Volume I, Oxford University Press, Oxford, 143.
[28] Gödel, K. (1940) doc. 1940. In: Feferman, et al., Eds., op. cit., Volume II, Oxford University Press, Oxford, 34.
[29] Raguní, G. (2012) The Gödel’s Legacy: Revisiting the Logic. Intellectual Archive, 1, 2.
[30] Gödel, K. (1931) doc. 1931. In: Feferman, et al., Eds., op. cit., Volume I, Oxford University Press, Oxford, 187.
[31] Feferman, S. (1986) Gödel’s Life and Work. In: Feferman, et al., Eds., op. cit., Volume I, Oxford University Press, Oxford, 33 Footnote No.23.
[32] Vaught, R.L. (1986) Introductory Note to 1934c and 1935. In: Feferman, et al., Eds., op. cit., Volume I, Oxford University Press, Oxford, 377.
[33] Fenstad, J.E. (1986) Introductory Note to 1974. In: Feferman, et al., Eds., op. cit., Volume II, Oxford University Press, Oxford, 309.
[34] Heijenoort, V. (1967) From Frege to Gödel. Harvard University Press, Cambridge, CA, 232-251 and 254-263.
[35] Von Neumann, J. (1925) An Axiomatization of Set Theory. In: Heijenoort, V., Ed., From Frege to Gödel, Harvard University Press, Cambridge, CA, 412. Here is an especially interesting remark by Von Neumann: “[...] no categorical axiomatization of set theory seems to exist at all; [...] And since there is no axiom system for mathematics, geometry, and so forth that does not presuppose set theory, there probably cannot be any categorically axiomatized infinite systems at all”.
[36] Hilbert, D. (1927) The Foundations of Mathematics. In: Heijenoort, V., From Frege to Gödel, Harvard University Press, Cambridge, CA, 464.
[37] Maltsev, A. (1936) Untersuchungen aus dem Gebiete der mathematischen Logik. Matematicheskii Sbornik, 1, 323-336. In: Maltsev, A. (1971) The Mathematics of Algebraic Systems: Collected Papers 1936-1967, Amsterdam.
[38] Gödel, K. (1929) doc. 1929. In: Feferman, et al., Eds., op. cit., Volume I, Oxford University Press, Oxford, 61-63.
[39] Gödel, K. (1934) doc. 1934. In: Feferman, et al., Eds., op. cit., Volume I, Oxford University Press, Oxford, 346.
[40] Gödel, K. (1929-1930) docs. 1929, 1930 and 1930a. In: Feferman, et al., Eds., op. cit., Volume I, Oxford University Press, Oxford, 69, 121 and 125.
[41] Gödel, K. (1931) doc. 1931a. In: Feferman, et al., Eds., op. cit., Volume I, Oxford University Press, Oxford, 203.
[42] Gödel, K. (1934) doc. 1934c. In: Feferman, et al., Eds., op. cit., Volume I, Oxford University Press, Oxford, 379.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.