Organic Reserves in ropical Grasses under Grazing

DOI: 10.4236/ajps.2015.614236   PDF   HTML   XML   4,125 Downloads   5,378 Views   Citations


Inadequate management in recent times has been considered the main factor contributing to pasture degradation. A major reason for this is related to gross errors of grazing management as a consequence of the lack of knowledge of ecophysiological limits of forage. This review aimed to approach the importance of organic reserves for grasses under grazing. Therefore, the predominant effect of animal grazing is the reduction of leaf area which impacts on carbohydrate and nitrogen reserves and consequently the growth of tillers, leaves and roots. Grass growth after defoliation is related to organic reserves and rate of photosynthesis. The latter is affected by the level of canopy light interception of and by the reminiscent leaf area index. When grazing management is carried out with respect to the physiological limits of grass growth, the rate of dry matter accumulation will be quick and constant. In this aspect, grazing management consists of seeking an efficient balance between plant growth and consumption which will reflect on animal productivity. Therefore, a balance point among frequency and intensity of defoliation must be found to achieve greater animal production concerning the ecophysiological limits of the forage plants. So the challenge will be to find a balance between frequency and intensity of grazing to achieve greater production of animals respecting the eco-physiological limits of forage plants for each forage grass individually.

Share and Cite:

Ferro, M. , Zanine, A. , Ferreira, D. , de Souza, A. and Valério Geron, L. (2015) Organic Reserves in ropical Grasses under Grazing. American Journal of Plant Sciences, 6, 2329-2338. doi: 10.4236/ajps.2015.614236.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Food and Agriculture Organization of the United Nations (FAO) (2013) How to Feed the World in 2050.
[2] Pimentel, C. (1998) Metabolismo de carbono na agricultura tropical. 1 ed., Seropédica: Edur, 2, 150 p.
[3] Zimmer, A.H. and Macedo, M.C.M. (2010) Recuperação de pastagens degradadas. Seminário de Sensibilização do Programa ABC—Agricultura de Baixa Emissão de Carbono. Embrapa Gado de Corte, 4, 200 p.
[4] Pereira, O.G., Gobbi, K.F. and Pereira, D.H. (2006) Conservação de Forrageiras como opção para o manejo de pastagens. Revista Brasileira de Zootecnia, 43, 138-159.
[5] Ferreira, D.J. and Zanine, A.M. (2014) Challenges Facing Pasture in The Context of Agricultural Multifunctionality in Brazil. American Journalof Experimental Agriculture, 4, 1793-1811.
[6] Da Silva, S.C. and Nascimento Jr., D. (2007) Avanços na pesquisa com plantas forrageiras tropicais em pastagens: características morfofisiológicas e manejo do pastejo. Revista Brasileira de Zootecnia, 36, 121-138.
[7] Zanine, A.M., Nascimento Jr., D., Sousa, B.M.L., Silveira, M.C.T. and Silva, W.L. (2013) Tillering Dynamics in Guinea Grass Pastures Subjected to Management Strategies under Rotational Grazing. Revista Brasileira de Zootecnia, 42, 155-161.
[8] Zanine, A.M., Nascimento Jr., D., Pena, K.S., Da Silva, S.C. and Sbrissia, A.F. (2011) Características estruturais e acúmulo de forragem em capim-tanzania sob pastejo rotativo. Revista Brasileira de Zootecnia, 40, 2364-2373.
[9] Nascimento Jr., D.D. and Adese, B. (2004) Acúmulo de biomassa na Pastagem. Anais... II Simpósio sobre manejo estratégico da pastagem. Universidade Federal de Viçosa. Viçosa-MG, 2, 85-104.
[10] Montagner, D.B. (2004) Fluxos de carbono e Nitrogênio em pastos sob pastejo. In: Simpósio sobre Manejo de Pastagens, Viçosa-MG, 2, 55-175.
[11] Zanine, A.M. and Ferreira, D.J. (2015) Animal Manure as a Nitrogen Source to Grass. American Journal of Plant Sciences, 6, 899-910.
[12] Costa, N.L., Magalhães, J.A., Townsend, C.R. and Paulino, V.T. (2004) Fisiologia e Manejo das Plantas Forrageiras. Embrapa Rondônia, 3, 27 p.
[13] Majerowicz, N. (2004) Fotossíntese. In: Kerbauy, G.B., Ed., Fisiologia Vegetal, 2nd Edition, Guanabara, São Paulo, 114-178.
[14] Rosa, L.M.G. (2004) Fotossíntese: As reações luminosas. In: Zeiger, T., Ed., Fisiologia Vegetal, 3rd Edition, Artmed, Porto Alegre, 139-172.
[15] Santarém, E.R. (2004) Translocação no Floema. In: Zeiger, T., Ed., Fisiologia Vegetal, 3rd Edition, Artmed, Porto Alegre, 221-250.
[16] Wardlaw, I.F. (1990) Tansley Review No. 27: The Control of Carbon Partitioning in Plants. New Phytologist, 116, 341-381.
[17] Zanine, A.M. and Santos, E.M. (2008) Senescência e acúmulo líquido de forragem. Revista Científica Rural, 12, 113-125.
[18] Ryle, G.J. and Powell, C.E. (1975) Defoliation and Regrowth in the Graminaceous Plant: The Role of Current Assimilate. Annals of Botany, 39, 297-310.
[19] Ryle, G.J.A., Powell, C.E. and Gordon, A.J. (1985) Short-Term Changes in CO2 Evolution Associated with Nitrogenase Activity in White Clover in Response to Defoliation and Photosynthesis. Journal Experimental Botany, 36, 634-643.
[20] Rodrigues, L.R.A. (1984) Morphological and Physiological Responses of Dwarf Elephant Grass (Pennisetum purpureum (L.) Schum.) to Grazing Management. Thesis (Doctor of Philosophy), University of Florida, Gainesville 192 p.
[21] Lemaire, G. (1997) The Physiology of Grass Growth Under: Tissue Turnover. In: Simpósio Internacional sobre Produção Animal em Pastejo, Universidade Federal de Viçosa, Anais... Viçosa, 117-144.
[22] Pedreir, A.C.G.S., Mello, A.C.L. and Otani, L.O. (2001) Processo de produção de forragem em pastagens. In: Reunião Anual da Sociedade Brasileira de Zootecnia, FEALQ, Anais...Piracicaba, 772-807.
[23] Alexandrino, E., Gomide, J.A. and Gomide, C.A.M. (2005) Crescimento do dossel de Panicum maximum “cv” Mombaça. Revista Brasileira de Zootecnia, 34, 2164-2173.
[24] Moore, K.J. and Hatfield, R.D. (1994) Carbohydrates and Forage Quality. In: Fahey, G.C., Ed., Forage Quality, Evaluation, and Utilization, American Society Agronomy, Madison, 229-280.
[25] Rodrigues, R.C., Mourão, G.B. and Valinote, A.C. (2007) Reservas Organicas, Relação Parte Aérea Raiz e C–N e Eliminação do Meristema Apical no Capim-Xaraés Sob doses de Nitrogênio e Potássio. Ciência Animal Brasileira, 8, 505-514.
[26] Gastal, F. and Durand, J.L. (2000) Effects of Nitrogen and Water Supply on N and C Fluxes and Partitioning in Defoliated Sward. In: Lemaire, G., Hodgson, J., de Moraes, A., Nabinger, C. and de F. Carvalho, P.C., Eds., Grassland Ecophysiology and Grazing Ecology, CAB International, Wallingford, Oxfordshire, 105-143.
[27] Lemaire, G., Onillion, B. and Gosse, G. (1991) Nitrogen Distribution within a Lucerne Canopy during Regrowth: Relation with Light Distribution. Annals of Botany, 68, 483-488.
[28] Dourado, R.L., Souza, A.L., Zanine, A.M., Toral, F.L.B., Ferreira, D.J. and Abreu, J.G. (2015) Structural and Production Characteristics of Piatã Grass Forage Submitted to Levels of Nitrogen. American Journal of Plant Sciences, 6, 693-701.
[29] Grindlay, D.J.C., Sylvester-Bradley, R. and Scott, R.K. (1993) Nitrogen Uptake of Young Vegetative Plants in Relation to Green Area. Journal Sciences Food Agriculture, 63, 116-128.
[30] Furlani, A.M.C. (2004) Nutrição Mineral. In: Kerbauy, G.B., Ed., Fisiologia Vegetal, Guanabara, São Paulo, 40-75.
[31] Cecato, U., Cano, C.C.P. and Bortolo, M. (2001) Teores de Carboidratos Não-Estruturais, Nitrogênio Total e Peso de Raízes em Coastcross-1 (Cynodon dactylon( L.) Pers) Pastejadopor Ovinos. Revista Brasileira de Zootecnia, 30, 644-650.
[32] Da Silva, S.C. and Nascimento Jr., D. (2006) Sistema Intensivo de Produção de Pastagens. II Congresso Latino-Americano de Nutrição Animal (II CLANA). Manejo e Nutrição de Ruminantes, São Paulo, 25-41.
[33] Volenec, J.J., Ourry, A. and Joern, B.C. (1996) A Role for Nitrogen Reserves in Forage Regrowth and Stress Tolerance. Physiologia Plantarum, 87, 185-193.
[34] Black, J.N. (1962) The Interrelationship of Solar Radiation and Leaf área Index in Determining the Rate of Dry Matter Production of Swards of Subterranean Clover (Trifolium subterraneum L.). Australian Journal Agricultural Research, 14, 20-37.
[35] De Visser, H. (1997) Nutrient Fluxes in Splanchnic Tissue of Dairy Cows: Influence of Grass Quality. Journal of Dairy Science, 80, 1666-1673.
[36] Schnyder, H. and De Visser, R. (1999) Fluxes of Reserve-Derived and Currently Assimilated Carbon and Nitrogen in Perennial Ryegrass Recovering from Defoliation. Plant Physiology, 119, 1423-1435.
[37] Davidson, J.L. and Milthorpe, F.L. (1966) Leaf Growth of Dactylis glomerata L. Following Defoliation. Annals of Botany, 30, 173-184.
[38] Gomide, C.A.M., Gomide, J.A. and Huaman, C.A.M. (2002) Fotossíntese, Reservas Organicas e Rebrota do Capim-Mombaça (Panicum maximum Jacq.) sob Diferentes Intensidades de Desfolha do Perfilho Principal. Revista Brasileira de Zootecnia, 31, 2165-2175.
[39] Morvan-Bertrand, A., Pavis, N., Boucaud, J. and Prud’homme, M.P. (1999) Partitioning of Reserve and Newly Assimilated Carbon in Roots and Leaf Tissues of Lolium perenne during Regrowth after Defoliation: Assessment by C-13 Steady-State Labeling and Carbohydrate Analysis. Plant Cell and Environment, 22, 1097-1108.
[40] May, L.H. (1960) The Utilization of Carbohydrate Reserves in Pasture Plants after Defoliation. Herbage Abstracts, 30, 236-245.
[41] Carvalho, C.A., Da Silva, S.C. and Sbrissia, A.F. (2001) Carboidratos não Estruturais e Acúmulo de Forragem em Pastagens de Cynodonspp. sob Lotação Contínua. Scientia Agricola, 58, 667-674.
[42] Lupinacci, A.V. (2002) Reservas organicas, índice de área foliar e produção de forragem em Brachiaria brizantha, cv. Marandu submetida a intensidade de pastejo por bovinos de corte. Picacicaba, SP, Dissertação (Mestrado)—Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, São Paulo, 160.
[43] Rodrigues, R.C., Cabral, L. and Silva, L. (2008) Carboidratos não estruturais e compostos nitrogenados em plantas forrageiras: Importancia e métodos analíticos. Ed. UFMT, Cuiabá, 38 p.
[44] Brougham, R.M. (1957) Interception of Light by the Foliage of Pure and Mixed Stands of Pasture Plants. Australian Journal of Agricultural Research, 9, 39-52.
[45] Scheffer-Basso, S.M., Scherer, C.V. and Ellwanger, M.F. (2008) Response to Fertilization Perennial Pastures with Pig Slurry: Natural Pasture. Journal of Animal Science, 37, 221-227.
[46] Soares Filho, C.V. (2009) Características morfogenéticas, perdas de nitrogênio por volatilização, reservas organicas e sistema radicular do capim Tanzania fertilizado com doses de nitrogênio. Tese(Livre docência), Universidade Estadual Paulista, Faculdade de Odontologia e curso de Medicina Veterinária, Araçatuba, 154 p.
[47] Moraes, A. (1991) Produtividade animal e dinamica de uma pastagem de pangola (Digitaria decumbens Stent.), azevém (Lolium multiflorum Lam.)e trevo branco (Trifolium repens L.), submetida a diferentes pressões de pastejo. Tese (Doutorado), Universidade Federal do Rio Grande do Sul, Porto Alegre, 200 p.
[48] Giacomini, A.A., Mattos, W.T. and Mattos, H.B. (20005) Crescimento de raízes dos capins Aruana e Tanzania submetidos a duas doses de nitrogênio. Revista Brasileira de Zootecnia, 34, 1109-1120.
[49] Chapman, D. and Lemaire, G. (1996) Tissue Flows in Grazed Plant Communities. In: Hodgson, J. and Illius, A.W., Eds., The Ecology and Management of Grazing Systems, CAB International, Guilford, 3-36.
[50] Lemaire, G., Khaithy, M., Onillon, B., Allirand, J.M., Chartier, M. and Gosse, G. (1992) Dynamics of Accumulation and Partitioning of N in Leaves, Stems and Roots of Lucerne (Medicago sativa L.) in a Dense Canopy. Annals of Botany, 70, 429-435.
[51] Corsi, M., Martha, J.R. and Pagotto, D.S. (2001) Sistema radicular: Dinamica e resposta a regimes de desfolha. In: A Produção Animal na Visão dos Brasileiros, FEALQ, Anais... Piracicaba, 838-852.
[52] Marschner, H. (1995) Mineral Nutrition of Higher Plants. 2nd Edition, Academic Press, London, 889 p.
[53] Wardlaw, I.F. (1990) The Control of Carbon Partitioning in Plants. New Phytologist, 116, 341-381.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.