Surface Wave Propagation in a Generalized Thermoelastic Material with Voids
Baljeet Singh, Raj Pal
.
DOI: 10.4236/am.2011.25068   PDF   HTML     6,573 Downloads   11,958 Views   Citations

Abstract

In the present paper, the propagation of surface wave in a generalized thermoelastic solid with voids is considered. The governing equations are solved to obtain the general solution in x-z plane. The appropriate boundary conditions at an interface between two dissimilar half-spaces are satisfied by appropriate particular solutions to obtain the frequency equation of the surface wave in the medium. Some special cases are also discussed.

Share and Cite:

B. Singh and R. Pal, "Surface Wave Propagation in a Generalized Thermoelastic Material with Voids," Applied Mathematics, Vol. 2 No. 5, 2011, pp. 521-526. doi: 10.4236/am.2011.25068.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. W. Nunziato and S. C. Cowin, “A Nonlinear Theory of Elastic Materials with Voids,” Archive for Rational Mechanics and Analysis, Vol. 72, No. 2, 1979, pp. 175-201.
[2] S. C. Cowin and J. W. Nunziato, “Linear Elastic Materials with Voids,” Journal of Elasticity, Vol. 13, No. 2, 1983, 125-147. doi:10.1007/BF00041230
[3] P. Puri and S. C. Cowin, “Plane Waves in Linear Elastic Materials with Voids,” Journal of Elasticity, Vol. 15, No. 2, 1985, pp. 167-183. doi:10.1007/BF00041991
[4] D. Iesan, “A Theory of Thermoelastic Materials with Voids,” Acta Mechanica, Vol. 60, No. 1-2, 1986, pp. 67- 89. doi:10.1007/BF01302942
[5] R. S. Dhaliwal and J. Wang, “A Heat-Flux Dependent Theory of Thermoelasticity with Voids,” Acta Mechanica, Vol. 110, No. 1-4, 1993, pp. 33-39.
[6] M. Ciarletta and A. Scalia, “On the Nonlinear Theory of Nonsimple Thermoelastic Materials with Voids,” Journal of Applied Mathematics and Mechanics, Vol. 73, No. 2, 1993, pp. 67-75.
[7] M. Ciarletta and E. Scarpetta, “Some Results on TherMoelasticity for Dielectric Materials with Voids,” Journal of Applied Mathematics and Mechanics, Vol. 75, No. 9, 1995, pp. 707-714.
[8] M. Marin, “A Uniqueness Result for Body with Voids in Linear Thermoelasticity,” Rendiconti di Matematica, Vol. 17, No. 1, 1997, pp. 103-113.
[9] M. Marin, “On the Domain of Influence in Thermoelasticity of Bodies with Voids,” Archiv der Mathematik, Vol. 33, No. 4, 1997, pp. 301-308.
[10] S. Chirita and A. Scalia, “On the Spatial and Temporal Behavior in Linear Thermoelasticity of Materials with Voids,” Journal of Thermal Stresses, Vol. 24, No. 5, 2001, pp. 433-455.
[11] S. D. Cicco and M. Diaco, “A Theory of Thermoelastic Materials with Voids without Energy Dissipation,” Journal of Thermal Stresses, Vol. 25, No. 5, 2002, pp. 493- 503. doi:10.1080/01495730252890203
[12] M. Ciarletta, B. Straughan and V. Zampoli, “Thermo- poroacoustic Acceleration Waves in Elastic Materials with Voids without Energy Dissipation,” International Journal of Engineering Science, Vol. 45, No. 9, 2007, pp. 736-743. doi:10.1016/j.ijengsci.2007.05.001
[13] B. Singh, “Wave Propagation in a Generalized Thermoelastic Material with Voids,” Applied Mathematics and Computation, Vol. 189, No. 1, 2007, pp. 698-709. doi:10.1016/j.amc.2006.11.123
[14] M. Ciarletta, M. Svanadze and L. Buonanno, “Plane Waves and Vibrations in the Theory of Micropolar Thermoelasticity for Materials with Voids,” European Journal of Mechanics-A-Solids, Vol. 28, No. 4, 2009, pp. 897-903. doi:10.1016/j.euromechsol.2009.03.008
[15] M. Aoudai, “A Theory of Thermoelastic Diffusion Ma- terial with Voids,” Zeitschrift für Angewandte Mathe- matik und Physik, Vol. 61, No. 2, 2010, pp. 357-379. doi:10.1007/s00033-009-0016-0
[16] L. Rayleigh, “On Waves Propagating along the Plane Surface of an Elastic Solid,” Proceedings of the London Mathematical Society, Vol. 17, No. 1, 1885, pp. 4-11. doi:10.1112/plms/s1-17.1.4
[17] D. S. Chandrasekharaiah, “Effects of Surface Stresses and Voids on Rayleigh Waves in an Elastic Solid,” International Journal of Engineering Science, Vol. 25, No. 2, 1987, pp. 205-211.
[18] P. Chadwick and D. W. Windle, “Propagation of Rayleigh Waves along Isothermal and Insulated Boundaries,” Proceedings of the Royal Society of America, Vol. 280, No. 1380, 1964, pp. 47-71. doi:10.1098/rspa.1964.0130
[19] V. K. Agarwal, “On Surface Waves in Generalized Thermoelasticity,” Journal of Elasticity, Vol. 8, No. 2, 1978, pp. 171-177. doi:10.1007/BF00052480
[20] J. N. Sharma and H. Singh, “Thermoelastic Surface Waves in a Transversely Isotropic Half-Space with Thermal Relaxation,” Indian Journal of Pure and Applied Mathematics, Vol. 16, No. 10, 1985, pp. 1202-1219.
[21] A. P. Mayer, “Thermoelastic Attenuation of Surface Acoustic Waves,” International Journal of Engineering Science, Vol. 28, No. 10, 1990, pp. 1073-1082. doi:10.1016/0020-7225(90)90135-6
[22] F. V. Semerak, “The Effect of Thermal Relaxation on Rayleigh Surface Waves in a Thermoelastic Medium,” Journal of Mathematical Sciences, Vol. 88, No. 3, 1997, pp. 396-399.
[23] D. S. Chandrasekharaiah, “Thermoelastic Rayleigh Waves without Energy Dissipation,” Mechanics Research Communication, Vol. 24, No. 1, 1997, pp. 93-102. doi:10.1016/S0093-6413(96)00083-3
[24] J. N. Sharma, D. Singh and R. Kumar, “Generalized Thermoelastic Waves in Homogeneous Isotropic Plates,” Journal of the Acoustical Society of America, Vol. 108, No. 2, 2000, pp. 848-851. doi:10.1121/1.429619
[25] J. N. Sharma and D. Kaur, “Rayleigh Waves in Rotating Thermoelastic Solids with Voids” International Journal of Applied Mathematics and Mechanics, Vol. 6, No. 3, 2010, pp. 43-61.
[26] H. W. Lord and Y. Shulman, “A Generalized Dynamical Theory of Thermoelasticity,” Journal of the Mechanics and Physics of Solids, Vol. 15, No. 5, 1967, pp. 299-309. doi:10.1016/0022-5096(67)90024-5

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.