A Novel Biodegradable Poly (Hydroxybutanedioic Acid-co-2-hydroxypropane-1,2,3-tricarboxylic Acid) Copolymer for Water Treatment Applications

Abstract

Minimizing the formation of inorganic scale deposits in industrial water continues to be a challenge for water treatment systems. In order to meet this challenge a novel biodegradable poly (DL-malic acid-co-citric acid) copolymer, effective in providing calcium carbonate scale inhibition was developed. Synthesis and characterization of the biodegradable, water-soluble and polyester copolymer was performed. Synthesis was done by direct bulk melt condensation in the absence of a catalyst above 150°C. Characterization of the copolymer was carried out using infrared absorption spectra (FTIR), differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) equipment. In the present work the precipitation of calcium carbonate from relative supersaturated solutions at different weight ratios of comonomer inhibition rates have been studied. The results indicate that the copolymer is an effective calcium carbonate descaling inhibitor that suppresses the growth process against calcium mineral scale deposits.

Share and Cite:

N. Kumar and K. Kanny, "A Novel Biodegradable Poly (Hydroxybutanedioic Acid-co-2-hydroxypropane-1,2,3-tricarboxylic Acid) Copolymer for Water Treatment Applications," Open Journal of Organic Polymer Materials, Vol. 3 No. 2, 2013, pp. 53-58. doi: 10.4236/ojopm.2013.32009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. A. Wohlever, Z. Amjad and R. W. Zuhl, “Performance of Anionic Polymers as Precipitation Inhibitors for Calcium Phosphonates in Advances in Crystal Growth Inhibition Technologies,” Kluwer Academic Publishers, New York, 2001.
[2] J. Amjad, J. F. Pugh, Zibrida and R. W. Zuhl, “Performance of Polymers in Industrial Water Systems. The Influence of Process Variables,” Material Performance, Vol. 36, No. 1, 1997, pp. 32-38.
[3] Z. Amjad and R. W. Zuhl, “An Evaluation of Silica Scale Control Additives for Industrial Water Systems,” NACE International, New Orleans, 2008.
[4] S. J. Gadaleta, A. Gericke, A. L. Boskey and R. Mendelsohn, “Two-Dimensional Infrared Correlation Spectroscopy of Synthetic and Biological Apatites,” Biospectroscopy, Vol. 2, No. 6, 1996, pp. 353-364. doi:10.1002/(SICI)1520-6343(1996)2:6<353::AID-BSPY2>3.0.CO;2-4
[5] Z. Amjad, “Controlling Metal Ion Fouling in Industrial Water Systems,” Association of Water Technologies, 2002.
[6] K. D. Demadis and S. D. Katarachia, “Metal-Phosphonate Chemistry: Synthesis, Crystal Structure of Calcium-Amnotris (Methylene Phosphonate) and Inhibition of CaCO3 Crystal Growth,” Phosphorus, Sulfur, and Silicon and the Related Elements, Vol. 179, No. 3, 2004, pp. 627-648. doi:10.1080/10426500490441514
[7] D. R. Lu, C. M. Xiao and S. J. Xu, “Starch-Based Completely Biodegradable Polymer Materials,” Polymer Letters, Vol. 3, No. 6, 2009, pp. 366-375. doi:10.3144/expresspolymlett.2009.46
[8] S. Roweton, S. J. Huang and G. Swift, “Poly (Aspartic Acid): Synthesis, Biodegradation, and Current Applications,” Journal of Environmental Polymer Degradation, Vol. 5, No. 3, 1997, pp. 175-181.
[9] G. Yuhua, L. Zhenfa, Z. Lihui and L. Haihua, “Study on Scale Inhibition Performance of Polyaspartic Acid Derivative,” Advanced Material Research, Vol. 535-537, Article ID: 10.4028, 2012, pp. 2287-2290. doi:10.4028/www.scientific.net/AMR.535-537.2287
[10] M. T. Sunita and D. J. Bhimrao Sarwade, “Synthesis and Biodegradability of Polyaspartic Acid: A Critical Review,” Journal of Macromolecular Science, Pure and Applied Chemistry, Vol. 42, No. 9, 2005, pp. 1299-1315. doi:10.1080/10601320500189604
[11] G. Swift, “Directions for Environmentally Biodegradable Polymer Research,” Accounts of Chemical Research, Vol. 26, No. 3, 1993, pp.105-110. doi:10.1021/ar00027a005
[12] L. Randal, J. L. Shogren, W. D. Westmorel, O. S. Gonzalez, M. D. Kenneth and G. Swift, “Properties of Copolymers of Aspartic acid and Aliphatic Dicarboxylic Acids Prepared by Reactive Extrusion,” Journal of Applied Polymer Science, Vol. 110, No. 6, 2008, pp. 3348-3354. doi:10.1002/app.28944
[13] B. Akin, M. ?ner, Y. Bayram and K. D. Demadis, “Effects of Carboxylate-Modified, ‘Green’ Inulin Biopolymers on the Crystal Growth of Calcium Oxalate,” Crystal Growth Desalination, Vol. 8, No. 6, 2008, pp. 1997-2005. doi:10.1021/cg800092q
[14] K. D. Demadis and M.Oner, “Inhibitory Effects of Green Additives on the Crystal Growth of Sparingly Soluble Salts,” Nova Science Publishers, New York, 2009.
[15] E. R. Camargo, E. Longo, R. L. Edson and M. Kakihana, “Qualitative Measurement of Residual Carbon in Wet -Chemically Synthesized Powders,” Ceramics International, Vol. 30, No. 8, 2004, pp. 2235-2239. doi:10.1016/j.ceramint.2004.02.003
[16] E. R. Camargo, M. Popa and M. Kakihana, “Sodium Niobate (NaNbO3) Powders Synthesized by a Wet-Chemical Method Using a Water-Soluble Malic Acid Complex,” Chemistry of Materials, Vol. 14, No. 5, 2002, pp. 2365-2368. doi:10.1021/cm011696d
[17] T. Y. Soror, “Scale and Corrosion Prevention in Cooling Water Systems Part I: Calcium Carbonate,” The Open Corrosion Journal, Vol. 2, No. 1, 2009, pp. 45-50. doi:10.2174/1876503300902010045
[18] S. H. Yao, F. F. Zheng, H. Liu, J. Y. Wang, H. J. Zhang, T. Yan, J. B. Wu, Z. R. Xia and X. Y. Qin, “Synthesis of Stoichiometric LiNbO3 Nanopowder through a Wet Chemical Method,” Crystal Research & Technology, Vol. 44, No. 11, 2009, pp. 1235-1240. doi:10.1002/crat.200900064
[19] J. P. Zhao, X. R. Liu and L. S. Qiang, “Preparation and Characterization of LiNbO3 Thin Films Derived from Metal Carboxylate Gels,” Thin Solid Films, Vol. 336-338, Article ID: 10.4028, 2007, pp. 213-216. doi:10.4028/www.scientific.net/KEM.336-338.213
[20] J.-J. Max and C. Chapados, “Infrared Spectroscopy of Aqueous Carboxylic Acids: Malic Acid,” The Journal of Physical Chemistry A, Vol. 106, No. 27, 2002, pp. 6452- 6461. doi:10.1021/jp014377i
[21] K. A. Singh, L. C. Pathak and S. K. Roy, “Effect of Citric Acid on the Synthesis of Nano-Crystalline Yttria Stabilized Zirconia Powders by Nitrate-Citrate Process,” Ceramics International, Vol. 33, No. 8, 2007, pp. 1463-1468. doi:10.1016/j.ceramint.2006.05.02

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.