Share This Article:

Giant Magnetoimpedance of Cube/Feconi Electroplated Wires: Focus on Angular Sensoric

Full-Text HTML XML Download Download as PDF (Size:434KB) PP. 21-27
DOI: 10.4236/wjcmp.2013.31004    3,195 Downloads   6,053 Views   Citations


Giant magnetoimpedance effect (GMI) is a subject of special interest proved by applied electrodynamic and technological applications. GMI effect in ferromagnetic tubes is connected with the high sensitivity of the magnetic system to a circular magnetic field near the spin-reorientation magnetic phase transitions offering high sensitivity with respect to an external magnetic field. In this work the non-magnetic CuBe wires were covered by Fe20Co6Ni74 layers by electrodeposition. The thickness of 1 μm for magnetic layer was high enough in order to ensure the high GMI value. Longitudinal magnetic anisotropy was induced by post preparation annealing in a magnetic field of 160 A/m at 320℃ during 1 hour in order to obtain appropriate magnetisation process. Angular dependencies of GMI were measured in a frequency range of 1 to 10 MHz for driving currents of 2.5 to 20 mA. High longitudinal GMI of the order of 400% was observed at quite low frequency of 1 MHz. The highest value of the sensitivity of 520%/Oe was found for the active resistance: Linear sensitivities of 0.023 Ω/° and 0.05 Ω/° were observed for reasonably low fields of 240 and275 A/m respectively for small angles, where planar GMI elements are less effective.


Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

G. Kurlyandskaya, P. Jantaratana, M. Cerdeira and V. Va´kovskiy, "Giant Magnetoimpedance of Cube/Feconi Electroplated Wires: Focus on Angular Sensoric," World Journal of Condensed Matter Physics, Vol. 3 No. 1, 2013, pp. 21-27. doi: 10.4236/wjcmp.2013.31004.


[1] R. S. Beach and A. E. Berkowitz, “Giant Magnetic Field Dependent Impedance of Amorphous FeCoSiB Wire,” Applied Physics Letters, Vol. 64, No. 26, 1994, pp. 3652-3654. doi:10.1063/1.111170
[2] H. Chiriac and T. A. Ovari, “Giant Magnetoimpedance Effect in Soft Magnetic Wire Families,” IEEE Transaction on Magnetics, Vol. 38, No. 5, 2002, pp. 3057-3062. doi:10.1109/TMAG.2002.802437
[3] G. V. Kurlyandskaya, D. De Cos, and S. O. Volchkov, “Magnetosensitive Transducers for Nondestructive Testing Operating on the Basis of the Giant Magnetoimpedance Effect: A Review,” Russian Jornal of Nondestructive Testing, Vol. 6, No. 6, 2009, pp. 377-398. doi:10.1134/S1061830909060023
[4] H. Garcia-Miquel, Bhagat, S. M. Bhagat, Lofland, S. E. Lofland, G. V. Kurlyandskaya and A. V. Svalov, “Ferromagnetic resonance in FeCoNi Electroplated Wires,” Journal of Applied Physics, Vol. 94, No. 3, 2003, pp. 1868-1872. doi:10.1063/1.1590407
[5] G. V. Kurlyandskaya, N. G. Bebenin and V. O. Vas’kovskiy, “Giant Magnetic Impedance of Wires with a Thin Magnetic Coating,” The Physics of Metals and Metallogrpaphy, Vol. 111, No. 2, 2011, pp. 133-154. doi:10.1134/S0031918X11010200
[6] G. V. Kurlyandskaya, H. Yakabchuk, E. Kisker, N. G. Bebenin, H. García-Miquel, M. Vazquez and V. O. Vas’ kovskiy, “Very Large Magnetoimpedance Effect in Fe-CoNi Ferromagnetic Tubes with High Order Magnetic Anisotropy,” Journal of Applied Physics, Vol. 90, No. 12, 2001, pp. 6280-6286. doi:10.1063/1.1418423
[7] A. S. Antonov, N. A. Buznikov, A. F. Prokoshin, A. L. Rakhmanov, I. T. Iakubov and A. M. Yakunin, “Nonlinear Magnetization Reversal in Copper-Permalloy Composite Wires Induced by a High-Frequency Current,” Technical Physics Letters, Vol. 27, No. 4, 2001, pp. 313315. doi:10.1134/1.1370211
[8] D. Garcia, G. V. Kurlyandskaya, M. Vazquez, F. I. Toth, and L. K. Varga, “Infuence of Field Annealing on the Hysteretic Behaviour of the Giant Magneto-Impedance Effect of Cu Wires Covered with Ni80Fe20 Outer Shells,” Journal of Magnetism and Magnetic Materials, Vol. 203, No. 1-3, 1999, pp. 208-210. doi:10.1016/S0304-8853(99)00236-X
[9] J. M. Garcia, A. Asenjo, M. Vázquez, A. M. Yakunin, A. S. Antonov and J. P. Sinnecker, “Determination of Closure Domain Penetration in Electrodeposited Microtubes by Combined Magnetic Force Microscopy and Giant Magneto-Impedance Techniques,” Journal of Applied Physics, Vol. 89, No. 7, 2001 pp. 3888-3891. doi:10.1063/1.1346998
[10] J. Velleuer, A.G. Munoz, H. Yakabchuk, C. Schiefer, A. Hackl and E. Kisker, “Giant Magneto Impedance in Electroplated NiFeMo/Cu Microwires,” Journal of Magnetism and Magnetic Materials, Vol. 311, No. 2, 2007, pp. 651657. doi:10.1016/j.jmmm.2006.08.030
[11] A. C. Mishra, “Microstructure, Magnetic and Magnetoimpedance Properties in Electrodeposited NiFe/Cu and CoNiFe/Cu Wire with Thiourea Additive in Plating Bath,” Physica B: Condensed Matter, Vol. 407, No. 6, 2012, pp. 923-934. doi:10.1016/j.physb.2011.11.033
[12] F. E. Atalay and S. Atalay, “Giant Magnetoimpedance Effect in NiFe/Cu Plated Wire with Various Plating Thicknesses,” Journal Alloys and Compounds, Vol. 392, No. 1-2, 2005, pp. 322-328. doi:10.1016/j.jallcom.2004.09.024
[13] K. Favieres, C. Aroca, M. C. Sanchez, K. V. Rao and V. Madurga, “Giant Magnetoimpedance in Twisted Amorphous CoP Multilayers Electrodeposited onto Cu Wires,” Journal of Magnetism and Magnetic Materials, Vol. 196, 1999, pp. 224-226. doi:10.1016/S0304-8853(98)00775-6
[14] P. Jantaratana and C. Sirisathitkul, “Effects of Thickness and Heat Treatments on Giant Magnetoimpedance of Electrodeposited Cobalt on Silver Wires,” IEEE Transactions on Magnetics, Vol. 42, No. 3, 2006, pp. 358-362. doi:10.1109/TMAG.2005.863270
[15] F. E. Atalay, H. Kaya and S. Atalay, “Magnetoimpedance Effect in Electroplated NiFeRu/Cu Wire,” Journal of Physics D: Applied Physics, Vol. 39, No. 3, 2006, pp. 431436. doi:10.1088/0022-3727/39/3/001
[16] G. V. Kurlyandskaya, A. García-Arribas and J. M. Barandiaran, “Advantages of Nonlinear Giant Magnetoimpedance for Sensor Applications,” Sensors and Actuators A, Vol. 106, No. 1-3, 2003, pp. 234-239. doi:10.1016/S0924-4247(03)00174-2
[17] M. T. Tung, D. V. A. Dung, N. D. Long and A.-T. Le, “Effects of Electrolytic Current Density on Structural, Magnetic Properties and GMI Behavior in Electrodeposited Bilayer FeNi/Cu Composite Wires,” Journal of Superconductivity and Novel Magnetism, Vol. 25, No. 7, 2012, pp. 2499-2505. doi:10.1007/s10948-012-1677-z
[18] K. Mohri, T. Uchiyama and L. V. Panina, “Recent Advances of Micro Magnetic Sensors and Sensing Application,” Sensors and Actuators A, Vol. 59, No. 1-3, 1997, pp. 1-8. doi:10.1016/S0924-4247(97)80141-0
[19] P. Jantarantana, N. G. Bebenin and G. V. Kurlyandskaya, “Magnetoimpedance and Magnetization Processes of FeCoNi Electroplated tubes,” Journal of Applied Physics, Vol. 105, No. 1, 2009, pp. 013908-013914. doi:10.1063/1.3054365
[20] G. V. Kurlyandskaya, J. M. Barandiaran, M. Vazquez, D. Garcia and N. V. Dmitrieva, “Infuence of Geometrical Parameters on the Giant Magnetoimpedance Response in Amorphous Ribbons,” Journal of Magnetism and Magnetic Materials, Vol. 215-216, 2000, pp. 740-742. doi:10.1016/S0304-8853(00)00274-2
[21] M. Yamaguchi, M. Takezawa, H. Ohdaira, K. I. Arai and A. Haga, “Directivity and Sensitivity of High-Frequency Carrier Type Thin-Film Magnetic Field Sensor,” Sensors and Actuators A, Vol. 81, No. 1-3, 2004, pp. 102-105. doi:10.1016/S0924-4247(99)00096-5
[22] H. Hauser, L. Kraus and P. Ripka, “Giant Magnetoimpedance Sensors,” IEEE Instrumentation & Measurement Magazine, Vol. 4, No. 2, 2001, pp. 28-32. doi:10.1109/5289.930983

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.