Specific Antigens to Distinguish M. tuberculosis from M. avium

Abstract

To distinguish Mycobacterium tuberculosis from Mycobacterium avium, specific M. tuberculosis antigens had been studied for improving the early differential diagnosis effect of tuberculosis caused by different Mycobacterium. The rabbit anti-M. avium sera and anti-M. tuberculosis sera were analyzed for antibody-based reactivity by matrix-assisted laser desorption-ionization mass spectrometry (MALDI-TOF Mass) against M. tuberculosis proteins. The immunoreactive spots, which were attributed to the proteins HspX, GroES and CFP-10, were mostly located at 10 - 60 kDa and PI 4 - 6, subsequently Western blotting result proved that HspX and CFP-10 were specific to M. tuberculosis and ELISA testing result of 30 M. avium positive sera showed that GroES were cross-reactive to M. avium. Lastly, positive and negative tuberculosis reference sera and based on the mechanism of indirect ELISA, the specificity and the sensitivity of the methods targeting the antibodies HspX, GroES or CFP-10 were evaluated at 37% and 26%, 12% and 97%, 81% and 98%, respectively. The combination of these three antibody detection methods allowed to reached a specificity of 42%, and of 39% without taken into account of the method targeting the GroES antibody. Using proteomics approach, we found three M. tuberculosis specific antigens showed good potential in tuberculosis diagnosis, providing basic study for serodiagnosis of tuberculosis.

Share and Cite:

Q. Liang, L. Zhang, Z. Tu, J. Wang, T. Hu, P. Wang, W. Wu, Q. Liu, Y. Zhao, Y. Li and W. Chen, "Specific Antigens to Distinguish M. tuberculosis from M. avium," Advances in Microbiology, Vol. 2 No. 3, 2012, pp. 201-207. doi: 10.4236/aim.2012.23024.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. S. Prince, D. D. Peterson and R. M. Steiner, “Infection with Mycobacterium avium Complex in Patients without Predisposing Conditions,” HNew England Journal of MedicineH, Vol. 321, No. 13, 1989, pp. 863-868. Hdoi:10.1056/NEJM198909283211304
[2] A. I. Zumla and J. Grange, “Nontuberculous Mycobacterial Pulmonary Infections,” HClinics in Chest MedicineH, Vol. 23, No. 2, 2002, pp. 369-376. Hdoi:10.1016/S0272-5231(01)00011-9
[3] M. Payton, R. Auty, R. Delgoda, M. Everett and E. Sim, “Cloning and Characterization of Arylamine n-Acetyltransferase Genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: Increased Expression Results in Isoniazid Resistance,” Journal of Bacteriology, Vol. 184, No. 4, 1999, pp. 1343-1347.
[4] D. E. Griffith, B. A. Brown, P. Cegielski, D. T. Murphy and R. J. Wallace Jr., “Early Results (at 6 Months) with Intermittent Clarithromycin Including Regimens for Lung Disease Due to Mycobacterium avium Complex,” HClinical Infectious DiseasesH, Vol. 30, No. 2, 2000, pp. 288-292. Hdoi:10.1086/313644
[5] R. J. Seballos, A. L. Walsh and A. C. Mehta, “Clinical Evaluation of a Liquid Chemical Sterilization System for the Flexible Bronchoscope,” Journal of Bronchology, Vol. 2, No. 3, 1995, pp. 192-199. Hdoi:10.1097/00128594-199507000-00005
[6] C. F. Von Reyn, D. E. Williams, C. R. Horsburgh, A. S. Jaeger, B. J. Marsh, K. Haslovk and M. Magnusson, “Dual Skin Testing with Mycobacterium avium Sensitin and Purified Protein Derivative to Discriminate Pulmonary Disease Due to M. avium Complex from Pulmonary Disease Due to Mycobacterium tuberculosis,” Journal of Infection Diseases, Vol. 177, No. 3, 1998, pp. 730-736. Hdoi:10.1086/514225
[7] A. M. Middleton, M. V. Chadwick, A. G. Nicholson, R. Wilson, D. J. Thomton, S. Kirkham and J. K. Sheehan, “Interaction between Mycobacteria and Mucus on a Human Respiratory Tissue Organ Culture Model with an Air Interface,” Experimental Lung Research, Vol. 30, No. 1, 2004, pp. 17-29. Hdoi:10.1080/01902140490252876
[8] P. R. Jungblut, E. C. Muller, J. Mattow and S. H. E. Kaufmann, “Proteomics Reveals Open Reading Frames in Mycobacterium tuberculosis H37Rv Not Predicted by Genomics,” Infection and Immunity, Vol. 69, No. 9, 2001, pp. 5905-5907. Hdoi:10.1128/IAI.69.9.5905-5907.2001
[9] J. Starck, G. HK?lleniusH, B. I. Marklund, D. I. Andersson and T. H?kerlundH, “Comparative Proteome Analysis of Mycobacterium tuberculosis Grown under Aerobic and Anaerobic Conditions,” Microbiology, Vol. 150, No. 11, 2004, pp. 3821-3829. Hdoi:10.1099/mic.0.27284-0
[10] S. W. Ryoo, Y. K. Park, S. N. HParkH, Y. S. HShimH, H. HLiewH, S. HKangH and G. H. Bai, “Comparative Proteomic Analysis of Virulent Korean Mycobacterium tuberculosis K-Strain with Other Mycobacteria Strain Following Infection of U-937 Macrophage,” Journal of Microbiology, Vol. 45, No. 3, 2007, pp. 268-271.
[11] P. Andersen, A. B. Andersen, A. L. Sorensen and S. Nagai, “Recall of Longlived Immunity to Mycobacterium tuberculosis Infection in Mice,” Journal of Immunology, Vol. 154, No. 7, 1995, pp. 3359-3372.
[12] E. D. Chan, R. Reves, J. T. Belisle, P. J. Brennan and W. E. Hahn, “Diagnosis of Tuberculosis by a Visually Detectable Immunoassay for Lipoarabinomannan,” American Journal of Respiratory and Critical Care Medicine, Vol. 161, No. 5, 2000, pp. 1713-1719.
[13] U. Demkow, M. Filewska, B. Bialas, M. HSzturmowiczH, T. HZielonkaH, S. HWeso?owskiH, J. HKu?H, J. HZio?kowskiH, E. HAugustynowicz-Kope?H, Z. HZwolskaH, E. HSkopińiska-RábewskaH and E. HRowińska-ZakrzewskaH, “Antimycobacterial Antibody Level in Pleural, Pericardial and Cerebrospinal Fluid of Patients with Tuberculosis,” Pneumonologia I Alergologia Polska, Vol. 72, No. 3, 2004, pp. 105-110.
[14] I. Olsen, L. J. HReitanH and H. G. HWikerH, “Distinct Differences in Repertoires of Low-Molecular-Mass Secreted Antigens of Mycobacterium avium Complex and Mycobacterium tuberculosis,” Journal of Clinical Microbiology, Vol. 38, No. 12, 2000, pp. 4453-4458.
[15] D. C. Dillon, M. R. Alderson, C. H. Day, T. Bement, A. Campos-Neto, Y. A. W.Skeiky, T. Vedvick, R. Badaro, S. G. Reed and R. Houghton, “Molecular and Immunological Characterization of Mycobacterium tuberculosis CFP-10, an Immunodiagnostic Antigen Missing in Mycobacterium bovis BCG,” Journal of Clinical Microbiology, Vol. 38, No. 9, 2000, pp. 3285-3290.
[16] L. A. H. van Pinxteren, P. Ravn, E. M. Agger, J. Pollock and P. Andersen, “Diagnosis of Tuberculosis Based on the Two Specific Antigens ESAT-6 and CFP10,” Clinical and Vaccine Immunology, Vol. 7, No. 2, 2000, pp. 155-160. Hdoi:10.1128/CDLI.7.2.155-160.2000
[17] P. S. Renshaw, K. L. HLightbodyH, V. HVeverkaH, F. W. HMuskettH, G. HKellyH, T. A. HFrenkielH, S. V. HGordonH, R. G. HHewinsonH, B. HBurkeH, J. HNormanH, R. A. HWilliamsonH and M. D. HCarrH, “Structure and Function of the Complex Formed by the Tuberculosis Virulence Factors CFP-10 and ESAT-6,” The HEMBO JHournal, Vol. 24, No. 23, 2005, pp. 2491-2498. Hdoi:10.1038/sj.emboj.7600732
[18] Y. Hu, F. Movahedzadeh, N. G. Stoker and A. R. M. Coates, “Deletion of the Mycobacterium tuberculosis Alpha-Crystallin-Like hspX Gene Causes Increased Bacterial Growth in Vivo,” Infection and Immunity, Vol. 74, No. 2, 2006, pp. 861-868. Hdoi:10.1128/IAI.74.2.861-868.2006
[19] R. Colangeli, J. S. Spencer, P. Bifani, A. Williams, K. Lyashchenko, M. A. Keen, P. J. Hill, J. Belisle and M. L. Gennaro, “MTSA-10, the Product of the Rv3874 Gene of Mycobacterium tuberculosis, Elicits Tuberculosis-Specific, Delayed-Type Hypersensitivity in Guinea Pigs,” Infection and Immunity, Vol. 68, No. 2, 2000, pp. 990-993. Hdoi:10.1128/IAI.68.2.990-993.2000
[20] G. H. Bothamley, “Epitope-Specific Antibody Levels Demonstrate Recognition of New Epitopes and Changes in titer but Not Affinity during Treatment of Tuberculosis,” Clinical and Vaccine Immunology, Vol. 11, No. 5, 2004, pp. 942-951. Hdoi:10.1128/CDLI.11.5.942-951.2004
[21] A. Geluk, M. Y. Lin, K. E. Meijgaarden, E. M. S. Leyten, K. L. M. C. Franken, T. H. M. Ottenhoff and M. R. Klein, “T-Cell Recognition of the HspX Protein of Mycobacterium tuberculosis Correlates with Latent M. tuberculosis Infection but Not with M. bovis BCG Vaccination,” Infection and Immunity, Vol. 75, No. 6, 2007, pp. 2914-2921. Hdoi:10.1128/IAI.01990-06
[22] J. C. Ranford, A. R. Coates and B. Henderson, “Chaperonins Are Cell-Signalling Proteins: The Unfolding Biology of Molecular Chaperones,” Molecular Medicine, Vol. 2, No. 8, 2000, pp. 1-17.
[23] I. Rosenkrands, K. Weldingh, P. Ravn, L. Brandt, P. Hojrup, P. B. Rasmussen, A. R. Coates, M. Singh, P. Mascagni and P. Andersen, “Differential T-Cell Recognition of Native and Recombinant Mycobacterium tuberculosis GroES,” Infection and Immunity, Vol. 67, No. 11, 1999, pp. 5552-5558.
[24] P. Nunn, “The Global Epidemic. The Present Epidemiology of Tuberculosis,” Scottish Medical Journal, Vol. 45, No. 5, 2000, pp. 6-7.
[25] R. J. Wilkinson, K. Haslov, R. Rappuoli, F. Giovannoni, P. R. Narayanan, C. R. Desai, H. M. Vordermeier, J. Paulsen, G. Pasvol, J. Lvanyi and M. Singh, “Evaluation of the Recombinant 38-Kilodalton Antigen of Mycobacterium tuberculosis as a Potential Immunodiagnostic Reagent,” Journal of Clinic Microbiology, Vol. 35, No. 3, 1997, pp. 553-557.
[26] K. Lyashchenko, R. Colangeli, M. Houde, H. A. Jahdali, D. Menzies and M. L. Gennaro, “Heterogeneous Antibody Responses in Tuberculosis,” Infection and Immunity, Vol. 66, No. 8, 1998, pp. 3936-3940.
[27] K. R. Uma Devi, B. Ramalingam and A. Raja, “Antibody Response to Mycobacterium tuberculosis 30 and 16 kDa Antigens in Pulmonary Tuberculosis with Human Immunodeficiency Virus Coinfection,” Diagnostic Microbiology & Infectious Disease, Vol. 6, No. 3, 2002, pp. 205-209.
[28] G. V. Kanaujia, M. A. Garcia, D. M. Bouley, R. Peters and M. L. Gennaro, “Detection of Early Secretory Antigenic Target-6 Antibody for Diagnosis of Tuberculosis in Non-Human Primates,” HComparative MedicineH, Vol. 53, No. 6, 2003, pp. 602-606.
[29] U. Zugel and S. H. E. Kaufmann, “Role of Heat Shock Proteins in Protection from and Pathogenesis of Infectious Diseases,” Clinical Microbiology Reviews, Vol. 12, No. 1, 1999, pp. 19-39.
[30] M. J. Elhay, T. Oettinger and P. Andersen, “Delayed- Type Hypersensitivity Responses to ESAT-6 and MPT64 from Mycobacterium tuberculosis in the Guinea Pig,” Infection and Immunity, Vol. 66, No.7, 1998, pp. 3454-3456.
[31] H. M?len, F. S. Berven, K. E. Fladmark and H. G. Wiker, “Comprehensive Analysis of Exported Proteins from Mycobacterium tuberculosis H37Rv,” Proteomics, Vol. 7, No. 10, 2007, pp. 1702-1718. Hdoi:10.1002/pmic.200600853

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.