Synthesis, Growth and Material Characterization of Bis L-Alanine Triethanol Amine (BLATEA) Single Crystals Grown by Slow Evaporation Technique

Abstract

Bis L-alanine Triethanol amine (BLATEA) salt was synthesized by solution method and it was subjected to solubility studies. Using the solubility data, the saturated solution of the synthesized salt was prepared and single crystals of Bis L-alanine Triethanol amine (BLATEA) were grown from aqueous solution by slow evaporation technique. X-ray diffraction (XRD) study was carried out to confirm the crystal structure. FTIR study reveals the functional groups of the sample. UV-Visible transmittance and absorption spectra were recorded for the sample to analyze the transparency of the grown crystal. Vickers micro hardness values were measured for the sample and from the microhardness study it is observed that BLATEA crystal is a soft material. SHG generation study was carried out to confirm the NLO activity of grown sample and also BLATEA crystal has been analyzed with dielectric measurements

Share and Cite:

T. Vela, P. Selvarajan and T. Freeda, "Synthesis, Growth and Material Characterization of Bis L-Alanine Triethanol Amine (BLATEA) Single Crystals Grown by Slow Evaporation Technique," Journal of Minerals and Materials Characterization and Engineering, Vol. 10 No. 10, 2011, pp. 959-972. doi: 10.4236/jmmce.2011.1010074.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J.A.Zerkowski, J.C. Mac Donald, G.M. Whitesides, Chem. Materials 9 (1997)1933.
[2] D.S. Chemla, J. Zyss (Eds.), Non linear Optical properties of Organic molecules & Crystals, Vol 1, Academic Press, Florida, USA, 1986,.
[3] S. Manivannan, S. Dhanuskodi, J. Crystal Growth 262 (2004) 473.
[4] J. Badan, R. Hierele, A. Perigand, J. Zyss, Am. Chem. Soc. Symp. Ser. 233 in D.J. Williams (Ed.), Am. Chem. Soc.Washington, Dec 1993.
[5] http://en.wikipedia.org/wiki/Amino_acids
[6] J.D. Bernal, Z. Kristallogr 78 (1931) 363.
[7] H.J. Simpson Jr., R.E. Marsh, Acta Cryst. 8 (1966) 550.
[8] R. Destro, R.E. Marsh, R. Bianchi, J.Phys.Chem. 92 (1988) 966.
[9] V. Bisder-Leib, M.F. Doherty, Cryst. Growth Des. 3 (2003) 221.
[10] Thenneti Raghavalu, G. Ramesh Kumar, S. Gokul Raj, V.Mathivanan, R.Mohan, J. Crystal Growth 307 (2007) 112.
[11] M. Diem, P.L. Polavarapu, M. Oboodi, L.A. Nafie, J. Am. Chem.Soc. 104(1982) 3329.
[12] D. Godzisz, M.H.czysym, M.M.Jesyszym, Spectrochim Acta Part A 59(1)(2003) 681.
[13] C. Razzetti, M. Ardoido, L. Zanotti, M. Zha, C. Parorici, Cryst.Res. Technol. 37 (2002) 456.
[14] C. Ramachandra Raja, A. Antony Joseph, Materials Letters 63(2009) 2507.
[15] A.S.J. Lucia Rose, P. Selvarajan, S. Perumal Rec. Res. Sci.Tech. 2(3) (2010)76.
[16] P.Selvarajan, J.Glorium Arulraj, S.Perumal, J. Crystal Growth 311 (2009) 3835.
[17] V. Krishnakumar R. Nagalakshmi S. Manohar, L. Kocsis, Spectrochimica Acta Part A 71 (2008) 471.
[18] B. Sivasankari and P.Selvarajan J. Exp. Sci. 1(3) (2010) 1.
[19] S. K. Kurtz, T.T. Perry, J. Appl. Phys. 39 (1968) 3798.
[20] G. Socrates, Infrared Characteristic Group Frequencies, Wiley- Interscience, Chichester, 1980.
[21] P.N. Kotru, A.K. Razdan, B.M. Wanklyn, J. Mater. Sci. 24 (1989)793.
[22] E.M.Onitsch,Mikroskopie,95(1950)12.
[23] K.V. Rao, A. Samakula, J. Appl. Phys. 36 (1965) 2031.
[24] P. Selvarajan, B.N. Das, H.B. Gon, K.V. Rao, J. Mater. Sci. 29 (1994) 4061.
[25] P. Selvarajan, J. Glorium Arulraj, S. Perumal, Physica B 405 (2010) 738.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.