Share This Article:

Vascular Plants of the Maritime Antarctic: Origin and Adaptation

Full-Text HTML Download Download as PDF (Size:418KB) PP. 381-395
DOI: 10.4236/ajps.2011.23044    5,525 Downloads   11,096 Views   Citations


The question of why only two species of vascular plant have colonized Antarctica has not been fully answered. This review is based on a series of parallel analyses of distribution, ecology, and adaptation on the morphological, cellular, and molecular genetic levels, and addresses the causes of the exclusive adaptation of Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. The authors conclude that the unique distribution of these species, including the Antarctic Peninsula, is not related to the presence of any specific mechanisms of adaptation to the ex-treme environment, but rather is a result of a gradual adaptation of these taxa to the extreme conditions during the de-velopment of glacial events and wide distribution and a substantial seed bank which could ensure mosaic survival in some ice-free areas, as well as survival through several years of snow and ice cover. Glaciological, molecular, popula-tion and reproduction biology studies are still necessary to deepen our understanding of the timing of the colonization of the region by vascular plants. However, keeping in mind that molecular methods alone are unlikely to give exhaus-tive evidence, application of other adequate methods in the context of the history of Pleistocenic glaciation in the region is also necessary to answer the question.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Parnikoza, I. , Kozeretska, I. and Kunakh, V. (2011) Vascular Plants of the Maritime Antarctic: Origin and Adaptation. American Journal of Plant Sciences, 2, 381-395. doi: 10.4236/ajps.2011.23044.


[1] R. I. L. Smith, “Terrestrial Plant Biology of the Sub- Antarctic and Antarctic,” In: R. M. Laws, Ed., Antarctic Ecology, Vol. 1, Academic Press, London, 1984, pp. 61-162.
[2] P. Convey, D. W. Hopkins, S. J Roberts and A. N. Tyler, “Global Southern Limit of Flowering Plants and Moss Peat Accumulation,” Polar Research, 2011, in press.
[3] P. Convey, J. A. E. Gibson, C.-D. Hillenbrand, D. A. Hodgson, P. J. A. Pugh, J. L. Smellie and M. I. Stevens, “Antarctic Terrestrial Life―Challenging the History of the Frozen Continent?” Biological Reviews, Vol. 83, No. 2, 2008, pp. 103-117. doi:10.1111/j.1469-185X.2008.00034.x
[4] M. W. Holdgate, “Terrestrial Ecology in the Maritime Antarctica,” In: R. Caricket, et al., Eds., Biologie Antarctique, Hermann, Paris, 1964, pp. 181-940.
[5] M. Alberdi, L. A. Bravo, A. Gutierrez, M. Gidekel and L. J. Corcuera, “Ecophysilogy of Antarctic Vascular Plants,” Physiologia Plantarum, Vol. 115, No. 4, 2002, pp. 479-486. doi:10.1034/j.1399-3054.2002.1150401.x
[6] R. E. Longton, “Vegetation Ecology and Classification in the Antarctic Zone,” Canadian Journal of Botany, Vol. 57, No. 20, 1979, pp. 2264-2278. doi:10.1139/b79-273
[7] R. I. L. Smith, “The Enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica,” In: A. H. L. Huiskes, et al., Eds., Antarctic Biology in a Global Context, Backhuys, Leiden, 2003, pp. 234-239.
[8] S. L. Mosyakin, L. G. Bezusko and A. S. Mosyakin, “Origins of Native Vascular Plants of Antarctica: Comments from Historical Phytogeography Viewpoint,” Cytology and Genetics, Vol. 41, No. 5, 2007, pp. 54-63.
[9] L. Kappen and B. Schroeter, “18 Plants and Lichens in the Antarctic, Their Way of Life and Their Relevance to Soil Formation,” In: L. Beyer and M. Bolter, Eds., Geoecology of Antarctic Ice-Free Coastal Landscapes, Vol. 154, Springler-Verlag, Berlin, 2002, pp. 327-374.
[10] R. I. L. Smith and R. W. M. Corner, “Vegetation of the Arthur Harbour—Argentine Islands Region of the Antarctic Peninsula,” British Antarctic Survey Bulletin, No. 33-34, 1973, pp. 89-122.
[11] W. D. Billings and H. A. Mooney “The Ecology of Arctic and Alpine Plants,” Biological Reviews of the Cambridge Philosophical Society, Vol. 43, No. 4, 1968, pp. 481-529. doi:10.1111/j.1469-185X.1968.tb00968.x
[12] P. Convey and R. I. L. Smith, “Response of Terrestrial Antarctic Ecosystems to Climate Change,” Plant Ecology, Vol. 41, Part 1, 2005, pp. 1-12. doi:10.1007/978-1-4020-4443-4_1
[13] J. A. Fowbert and R. I. L. Smith, “Rapid population increases in native vascular plants in the Argentine Islands Antarctic Peninsula,” Arctic and Alpine Research, Vol. 26, No. 3, 1994, pp. 290-296. doi:10.2307/1551941
[14] R. I. L. Smith, “Plant Colonization Response to Climate Change in the Antarctic,” Folia Facultatis Scientiarum Naturalium Universitatis Masarykiana Brunensis, Geographia, Vol. 25, No. 19-33, 2001, pp. 19-33.
[15] P. Convey, “Maritime Antarctic climate Change Signals from Terrestrial Biology,” Antarctic research series, Vol. 79, 2003, pp. 145-158. doi:10.1029/AR079p0145
[16] P. Convey and R. I. L. Smith, “Geothermal Bryophyte Habitats in the South Sandwich Islands, Maritime Antarctic,” Journal of Vegetation Science, Vol. 17, No. 4, 2006, pp. 529-538. doi:10.1111/j.1654-1103.2006.tb02474.x
[17] J. Turner, S. R. Colwell, G. J. Marshall, T. A. Lachlan-Cope, A. M. Carleton, P. D. Jones, V. Lagun, P. A. Reid and S. Iagovkina, “Antarctic Climate Change during the Last 50 Years,” International Journal of Climatology, Vol. 25, No. 3, 2005, pp. 279-294. doi:10.1002/joc.1130
[18] M. A. Olech, “Expansion of Alien Vascular Plant Poa annua L. in the Vicinity of the Henryk Arctowski station―A Consequence of Climate Change?” 29th International Polar Symposium, The Functioning of Polar Ecosystems as Viewed against Global Environmental Changes, Kraków, 19-21 September 2003, pp. 89-90.
[19] M. A. Olech and K. J. Chwedorzewska, “Population Growth of Alien Species Poa annua L. at the Vicinity of H. Arctowski Station (South Shetland Is),” SCAR/IASC IPY Open Science Conference, St. Petersburg, 8-11 July 2008, pp. 214-215.
[20] J. A. Edwards, “Studies in Colobanthus quitensis (Kunth.) Bartl. and Deschampsia Antarctica Desv.: VI. Reproductive Performance on Signy Island,” British Antarctic Survey Bulletin, No 28, 1974, pp. 67-86.
[21] J. Chiapella, “Infrageneric Classification and Phylogeny of Deschampsia (Poaceae: Avenae),” Problems of Evolution, Vol. 5, 2003, pp. 221-231.
[22] J. Chiapella, “A Molecular Phylogenetic Study of Des- champsia (Poaceae: Avenae) Inferred from Nuclear ITS and Plastid trnL Sequence Data: Support for Recognition of Avenella and Vahlodea,” Taxon, Vol. 56, No. 1, 2007, pp. 55-64.
[23] D. P. Fernández Souto, S. A. Catalano, D. Tosto, P. Bernasconi, A. Sala , M. Wagner and D. Corach, “Phylogenetic Relationships of Deschampsia antarctica (Poaceae): Insights from Nuclear Ribosomal ITS,” Plant Systematics and Evolution, Vol. 261, No. 1-4, 2006, pp. 1-9.
[24] S. Cardone, P. Sawatani, P. Rush, A. García, L. Poggio and G. Schrauf “Karyological Studies in Deschampsia antarctica Desv. (Poaceae),” Polar Biology, Vol. 32, No. 3, 2008. doi:10.1007/s00300-008-0535-8
[25] L. Frey, “Avenella: A Genus of the Aveneae (Poaceae) Worthy of Recognition,” Fragmenta Floristica et Geobotanica, No. 7, Supplement, 1999, pp. 27-32.
[26] D. M. Moore, “Studies in Colobanthus quitensis (Kunth.) Bartle. and Deschampsia antarctica Desv. II. Taxonomy, Distribution and Relationships,” British Antarctic Survey Bulletin, No. 23, 1970, pp. 63-80.
[27] B. V. Sneddon, “The Taxonomy and Breeding System of Colobanthus squarrosus (Caryophyllaceae),” New Zealand Journal of Botany, Vol. 37, No. 2, 1999, pp. 195-204. doi:10.1080/0028825X.1999.9512627
[28] P. G. Law and T. Burstall, “Heard Island. Australian National Antarctic Research Expedition,” Interim Reports, No. 7, 1953, p. 20.
[29] R. W. M. Corner, “Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv.: IV. Distribution and Reproductive Performance in the Argentine Islands,” British Antarctic Survey Bulletin, No. 26, 1971, pp. 41-50.
[30] D. M. Greene and A. Holtom, “Studies in Colobanthus quitensis (Kunth.) Bartle. and Deschampsia antarctica Desv III. Distribution, Habitats and Performance in the Antarctic Botanical Zone,” British Antarctic Survey Bulletin, No. 26, 1971, pp. 1-29.
[31] R. I. L. Smith and S. Poncet, “Deschampsia antarctica and Colobanthus quitensis in the Terra-Firma Islands,” British Antarctic Survey Bulletin, No. 74, 1987, pp. 31-35.
[32] V. Komárkova, S. Poncet and J. Poncet, “Two Native Vascular Plants, Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth.) Bartl: A New SouthernMost Locality and Other Localities in the Antarctic Peninsula Area,” Arctic and Alpine Research, Vol. 17, No. 4, 1985. pp. 401-416.
[33] V. Komárkova, S. Poncet and J. Poncet “Additional and Revisited Localities of Vascular Plants, Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth.) Bartl. in the Antarctic Peninsula Area,” Arctic and Alpine Research, Vol. 22, No. 1, 1990, pp. 108-113. doi:10.2307/1551725
[34] R. I. L. Smith, “Terrestrial and Freshwater Biotic Components of the Western Antarctic Peninsula,” In: R. M. Ross, et al., Eds., Foundation for Ecological Research West of the Antarctic Peninsula, Vol. 70, American Geophysical Union, Antarctic Research Series, 1996, pp. 15-59.
[35] V. F. De Carvalho, C. D. Pinheiro and P. A. Batista, “Characterization of Plant Communities in Ice-Free Areas Adjoining the Polish Station H. Arctowski, Admiralty Bay, King George’s Island, Antarctica,” 2006.
[36] I. Parnikoza, I. Dykyy, I. Kozeretska, O. Tyschenko and D. Inozemtseva, “Current State of Antarctic Herb Tundra Formation of Argentine Islands and Nearest Archipelago,” Ukraine in Antarctica―National Priorities and Glo- bal Integration, Kyiv, 23-25 May 2008, p. 31.
[37] I. Yu. Parnikoza, D. M. Inozemtseva, O. V. Tysсhenko, O. Mustafa and I. A. Kozeretska, “Antarctic Herb Tundra Colonization Zones in the Context of Ecological Gradient of Glacial Retreat,” Ukrainian Botany Journal, Vol. 65, No. 4, 2008, pp. 504-511.
[38] R. Bargagli, “Antarctic Ecosystems Environmental Contamination, Climate Change, and Human Impact,” In: M. M. Galdwell, et al., Ed., Ecological Studies, Springer- Verlag, Berlin, Vol. 175, 2005, pp. 1-395.
[39] D. Yu. Vlasov, E. V. Abakumov, M. A. Nadporozhanskaya, N. V. Kovsh, V. S. Krylenkov, V. V. Lukin and E. V. Safronova, “Lithosols of King George Island, Western Antarctica,” Eurasian Soil Science, Vol. 38, No. 7, 2005, pp. 681-687.
[40] J. Smykla, J. Wo?ek, and A. Barcikowski, “Zonation of Vegetation Related to Penguin Rookeries on King George Island, Maritime Antarctic,” Arctic, Antarctic, and Alpine Research, Vol. 39, No. 1, 2007, pp. 143-151. doi:10.1657/1523-0430(2007)39[143:ZOVRTP]2.0.CO;2
[41] M. Krywult, J. Smykla and A. Wincenciak, “Influence of Ornithogenic Fertilization on Nitrogen Metabolism of the Antarctic Vegetation,” 29 International Polar Symposium. The Functioning of Polar Ecosystems as Viewed against Global Environmental Changes, Kraków, 19-21 September 2003, pp. 123-127.
[42] I. Yu. Parnikoza, N. Yu. Miryuta, D. N. Maidanyuk, S. A. Loparev, S. G. Korsun, ?. G. Budzanivska, Т. P. Shev- chenko, V. P. Polischuk, V. А. Кunakh and I. А. Kozeretska, “Habitat and Leaf Cytogenetic Characteristics of Deschampsia antarctica Desv. in Maritime Antarctic,” Polar Science, Vol. 1, No. 2-4, 2007, pp. 121-127. doi:10.1016/j.polar.2007.10.002
[43] S. G. Korsun, I. A. Kozeretska, I. Yu. Parnikoza, L. I. Shkarivska, K. Ya. Luhovska and I. I. Klymenko, “The Effect of Natural and Anthropogenic Factors on the Chemical Composition of Soils in the Maritime Antarctics,” Agroekologichnyi Zhurnal, No. 4, 2008, pp. 20-25.
[44] D. M. Moore, “Flora of Tierra del Fuego,” Anthony Nelson Oswestry, UK, 1983.
[45] A. Corte, “Fertilidad de las Semillas Fanerogamas Que Crecen en Cabo Primavera (Costa de Danco), Peninsula Antarctica,” Contribución del Instituto Antártico Argentino, No. 65, 1961, pp. 1-16.
[46] G. Borgstr?m, “Formation of Cleistogamic and Chasmogamic Flowers in Wild Violets as a Photoperiodic Response,” Nature, Vol. 144, 1939, pp. 514-515.
[47] R. H. M. Langer and D. Wilson, “Environmental Control of Cleistogamy in Prairie Grass (Bromus unioloides H.B.K.),” New Phytologist, Vol. 64, No. 1, 2006, pp. 80-85. doi:10.1111/j.1469-8137.1965.tb05377.x
[48] I. Parnikoza, O. Kozeretska and I. Kozeretska, “Is a Translocation of Indigenous Plant Material Successful in the Maritime Antarctic?” Polarforshung, Vol. 78, No. 1-2, 2008, pp. 25-27.
[49] J A. Edwards, “Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv.: VII. Cyclic Changes Related to age in Colobanthus quitensis,” British Antarctic Survey Bulletin, No. 40, 1975, pp. 1-6.
[50] I. A. Kozeretska, I. Yu. Parnikoza, O. Mustafa, O. V. Tyschenko, S. G. Korsun and P. Convey, “Development of Antarctic Herb Tundra Vegetation near Arctowski Station, King George Island,” Polar Science, Vol. 3, No. 4, 2010, pp. 254-261. doi:10.1016/j.polar.2009.10.001
[51] P. Convey, “Reproduction of Antarctic Flowering Plants,” Antarctic Science, Vol. 8, No. 2, 1996, pp. 127-134.
[52] J. B. McGraw and T. A. Day, “Size and Characteristic of a Natural Seed Bank in Antarctica,” Arctic and Alpine Research, Vol. 29, No. 2, 1997, pp. 213-216.
[53] R. Upson, K. K. Newsham and D. J. Read, “Root-Fungal Associtions of Colobanthus quitensis and Deschampsia antarctica in the Maritime and Subantarctic,” Arctic, Antarctic, and Alpine Research, Vol. 40, No. 3, 2008, pp. 592-599.
[54] M. Рhilipp, J. B?cher, O. Mattson and S. R. J. Woodell, “A Quantitative Approach to the Sexual Reproductive Biology and Population Structure of Some Arctic Flowering Plants: Dryas integrifolia, Silene acaulis and Ranunculus nivalis,” Meddeleser om Gr?nland, Bioscience, Vol. 34, 1990, pp. 1-60.
[55] A. Mantovani and R. C. Vieira, “Leaf Micromorphology of Antarctic Pearlwort Colobanthus quitensis (Kunth) Bartl,” Polar Biology, Vol. 23, No. 8, 2000, pp. 531-538.
[56] A. Barcikowski, J. Czaplewska, I. Gie?wanowska, P. Loro, J. Smykla and K. Zarzycki, “Deschampsia antarctica (Poaceae)—The Only Native Grass from Antarctica,” In: L. Frey, Ed., Studies on grasses in Poland, W. Szafer Institute of Botany, Polish Academy of Science, Kraków, 2001, pp. 367-377.
[57] I. Gielwanowska and E. Szczuka, “New Ultrastructural Features of Organelles in Leaf Cells of Deschampsia antarctica Desv,” Polar Biology, Vol. 28, No. 12, 2005, pp. 951-955.
[58] L. Kappen, “Plant Activity under Snow and Ice, with Par- ticular Reference to Lichens,” Arctic, Vol. 46, No. 4, 1993, pp. 297-302.
[59] P. O. Montiel, “Soluble Carbohydrates (Trehalose in Particular) and Cryoprotection in Polar Biota,” Cryoletters, Vol. 21, No. 2, 2000, pp. 83-90.
[60] A. V. Kolesnichenko and V. K. Voynikov, “Low Temperature Stress Proteins in Plants,” Art-Press, Irkutsk, 2003.
[61] N. Olave-Concha, S. Ruiz-Lara, X. Munoz, L. A. Bravo and L. J. Corcuera, “Accumulation of Dehydrin Transcripts and Protein in Response to Abiotic Stresses in Deschampsia antarctica,” Antarctic Science, Vol. 16, No. 2, 2004, pp. 175-184.
[62] M. A. Reyes, L. J. Corcuera and L. Cardemil, “Accumulation of HSP70 in Deschampsia antarctica Desv. Leaves under Thermal Stress,” Antarctic Science, Vol. 15, No. 3, 2003, pp. 345-352.
[63] C. J. Doucet, L. Byass, L. Elias, D. Worrall, M. Small- wood and D. J. Bowles, “Distribution and Characterization of Recrystallization Inhibitor Activity in Plant and Lichen Species from the UK and Maritime Antarctic,” Cryobiology, Vol. 40, No. 3, 2000, pp. 218-227.
[64] U. P. John, R. M. Polotnianka, K. A. Sivakumaran, O. Chew, L. Mackin, M. J. Kuiper, J. P. Talbot, D. G. Nugent, J. Mautord, G. E. Schrauf and G. C. Spangenberg, “Ice Recrystallization Inhibition Proteins (IRIPs) and Freeze Tolerance in the Cryophilic Antarctic Hair Grass Deschampsia antarctica Desv,” Plant, Cell and Environment, Vol. 32, No. 4, 2009, pp. 336-348.
[65] M. Gidekel, L. Destefano-Beltrán, P. García, L. Mujica, P. Leal, M. Cuba, L. Fuentes, L. A. Bravo, L. J. Corcuera, M. Alberdi, I. Concha and A. Gutiérrez, “Identification and Characterization of Three Novel Cold Acclimation-Responsive Genes from the Extremophile Hair Grass Deschampsia antarctica Desv,” Extremophiles, Vol. 7, No. 6, 2003, pp. 459-469.
[66] E. Pérez-Torres, A. García, J. Dinamarca, M. Alberdi, A. Gutiérrez, M. Gidekel, A. G. Ivanov, N. P. A. Hüner, L. J. Corcuera and L. A. Bravo, “The Role of Photochemical Quenching and Antioxidants in Photoprotection of De- schampsia antarctica,” Functional Plant Biology, Vol. 31, No. 7, 2004, pp. 731-741.
[67] A. Zuniga-Feest , D. R. Ort, A. Gutierrez, M. Gidekel, L. A. Bravo and L. J. Corcuera, “Light Regulation of Sucrose- Phosphate Synthase Activity in the Grass Deschampsia antarctica,” Photosynthesis Research, Vol. 111, 2005, pp. 55-65.
[68] U. A. Bravo, N. Ulloa, G. E. Zuniga, A. Casanova, L. J. Corcuera and M. Alberdi, “Cold Resistance in Antarctic angiosperm,” Physiologia Plantarum, Vol. 111, No. 1, 2001, pp. 55-65.
[69] N. M. Topchii “The Role of the Light Collecting Complex in Higher Plant Adaptation to Light Environment,” PhD Thesis, Kyiv Taras Schevchenko National University, Kyiv, 2006.
[70] N. Yu. Taran, O. A. Okanenko, I. P. Ozheredova, I. A. Kozeretska and N. B. Svetlova “The Conposition of Lipid and Pigment-Protein Complexes of Photosynthetic Membranes in Deschampsia antarctica Desv.,” Reports of the National Academy of Sciences of Ukraine, No. 2, 2009, pp. 173-178.
[71] N. B. Svyetlova, A. A. Okanenko and N. Yu. Taran, “Impact of Ultraviolet Radiation on Deschampsia antarctica Desv. One of Vascular Plant Species in Antarctica,” SCAR/IASC IPY Open Science Conference, St. Petersburg, 8-11 July 2008, p. 197.
[72] C. Lütz, M. Blassing and D. Remias, “Different Flavanoid Patterns in Deschampsia antarctica and Colobanthus quitensis from the Marine Antarctic,” In: C. Wiencke, et al., Eds., Reports on Polar and Marine Research. The Antarctic Ecosystem of Potter Cove King George Island (Isla 25 de Mayo), Vol. 571, 2008, pp. 192-198.
[73] I. P. Ozheredova and I. A. Kozeretska, “Prediction of the Function of Amino Acid Products from Deschampsia antarctica Based on Homology with Known Proteins,” 4th International Conference on Factors of Experimental Evolution of Organisms, Kyiv, 22-26 September 2008, pp. 190-195.
[74] R. E. Krogulevitch and Т. S. Rostovceva, “Chromosome Numbers of Plants from Siberia and the Far East,” Nauka, Novosibirsk, 1984.
[75] A. A. Fedorova, et al., “Chromosome Numbers of Flowering Plants,” Nauka, Leningrad, 1969.
[76] B. G. Purdy and R. J. Bayer, “Genetic Diversity in the Tetraploid Sand Dune Endemic Deschampsia mackenziana and Its Widespread Diploid Progenitor D. caespitosa (Poaceae),” American Journal of Botany, Vol. 82, No. 1, 1995, pp. 121-130.
[77] F. Albers, “Karyologishe und Genomatische Verander- ungen Innerhalb der Graser-Subtripben Aristaveninae und Airinae,” Berichte der Deutschen Botanischen Gesellschaft, No. 91, 1978, pp. 693-697.
[78] V. P. Seledets and N. S. Probatova, “Ecological Areal and Some Problems of Differentiation in the Family Poaceae from the Russian Far East,” Problems of Evolution, No. 5, Dalnauka, Vladivostok, 2003, p. 220.
[79] K. K. Nkongolo, A. Deck and P. Michael, “Molecular and Cytological Analysis of Deschampsia cespitosa Population from Northern Ontario (Canada),” Genome, Vol. 44, No. 5, 2001, pp. 818-825.
[80] V. I. Adonin, I.Yu. Parnikoza, S. S. Kyrychenko, I. A. Kozeretska and V. A. Kunakh, “Mixoploidy in Des- champsia antarctica of the Maritime Antarctic,” Abstracts of the Proceedings in Honour of 300-Years from K. Linnaeus Born, Lugansk, Elton-2, May 2007, p. 74.
[81] S. S. Kiryachenko, I. A. Kozeretska and S. Rakusa-Su- shchevski, “Deschampsia antarctica: Genetic and Molecular Biology Aspects of Distribution in Antarctica,” Cytology and Genetics, Vol. 39, No. 4, 2005, pp. 75-80.
[82] I. Yu. Parnikoza, D. N. Maidanuk and I. A. Kozeretska “Are Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Migratory Relicts?” Cytology and Genetics, Vol. 41, No. 4, 2007, pp. 36-40.
[83] R. Jones, “The Biogeography of the Grasses and Lowland Grasslands of South-Eastern Australia,” 1994.
[84] G. J. Jordan and M. K. Macphail, “A Middle-Late Eocene Inflorescence of Caryophyllaceae from Tasmania, Australia,” American Journal of Botany, Vol. 90, No. 5, 2003, pp. 761-768.
[85] C. P. Osborne, “Atmosphere, Ecology and Evolution: What Drove the Miocene Expansion of C4 Grasslands?” Journal of Ecology, Vol. 96, No. 1, 2007, pp. 35-45.
[86] A. Gazdzicki, “Cenozoic Glacial History and Biota Evolution: Evidence from South Shetlands and Antarctic Peninsula,” 22nd International Polartagung, Jena, 18-24 September 2005, pp. 55.
[87] D. E. Sugden and C. M. Clapperton, “The maximum Ice Extent on Island Groups in the Scotia Sea, Antarctica,” Quarternary Research, Vol. 7, No. 2, 1977, pp. 268-282.
[88] D. E. Sugden, M. J. Bentley and C. O. Cofaigh, “Geological and Geomorphological Insights into Antarctic Ice Sheet Evolution,” Philosophical Transactions of the Royal Society A, Vol. 364, No. 1844, 2006, pp. 1607-1625.
[89] A. Tatur, “Ornithogenic Ecosystems in the Maritime Antarctic―Formation Development and Aisintegration,” Warsaw University Press, Warsaw, 2005, pp. 27-47.
[90] C. M. Clapperton, “Quaternary Glaciations in the Southern Ocean and Antarctic Peninsula Area,” Quaternary Science Reviews, Vol. 9, No. 2-3, 1990, pp. 229-252.
[91] A. A. Marsz, “The Origin and Classification of Ice Free Areas (“Oases”) in the Region of the Admiralty Bay (King George Island, The South Shetland Islands, West Antarctica),” In: P. Pro?ek, et al., Eds. Ecology of the Antarctic Coastal Oasis, Masaryk University, Brno, 2001, pp. 7-18.
[92] D. Yu. Bolshiyanov, “The Last Glacial Maximum and a Minor Ice Age in Antarctica,” Research Series of the Scientific Conference “Russia in Antarctica”, Arctic and Antarctic Scientific Research Instutute, Saint-Petersburg, 12-14 April 2006, pp. 50-51.
[93] M. I. Stevens, P. Greenslade, I. D. Hogg and P. Sunnucks, “Southern Hemisphere Springtails: Could Any Have Survived Glaciations of Antarctica,” Molecular biology and Evolution, Vol. 23, No. 5, 2006, pp. 874-882.
[94] D. C. Lindsay, “Vegetation of the South Shetland Islands,” British Antarctic Survey Bulletin, No. 25, 1971, pp. 59-83.
[95] V. Le Corre, S. Dumoulin-Lappegue and A. Kerner, “Genetic Variation at Allozyme and RAPD Loci in Sessile Oak Quercus petrea (Matt.) Liebl.: The Role of History and Geography,” Molecular Ecology, Vol. 6, No. 6, 1997, pp. 549-529.
[96] R. A. Volkov, I. A. Kozeretska, S. S. Kyryachenko, I. O. Andreev, D. N. Maidanyuk, I. Yu. Parnikoza and V. A. Kunakh, “Molecular Evolution and Variability of ITS1- ITS2 in Populations of Deschampsia antarctica from Two Regions of the Maritime Antarctic,” Polar Science, Vol. 4, No. 3, 2010, pp. 469-478. doi:10.1016/j.polar.2010.04.011
[97] R. Holderegger, I. Stehlic, R. I. L. Smith and R. J. Abbott, “Population of Antarctic Hairgrass (Deschampsia antarctica) Show Low Genetic Diversity,” Arctic, Antarctic and Alpine Research, Vol. 35, No. 2, 2003, pp. 214-217.
[98] K. J. Chwedorzewska, “Preliminary Genetic Study on Species from Genus Deschampsia from Antarctic (King George I.) and Arctic (Spitsbergen),” Polar Bioscience, No. 19, 2006, pp. 142-147.
[99] K. J. Chwedorzewska, P. T. Bednarek and J. Puchalski, “Molecular Variations of Antarctic Grass Deschampsia antarctica Desv. from King George Island (Antarctica),” Acta Societatis Botanicorum Poloniae, Vol. 73, No. 1, 2004, pp. 23-29.
[100] M. Van der Wouw, P. Van Dijk and A. D. H. L. Huiskes, “Regional Genetic Diversity Patterns in Antarctic Hairgrass (Deschampsia antarctica Desv.),” Journal of Biogeography, Vol. 35, No. 2, 2007, pp. 365-376.
[101] W. Szafer, “General Plant Geography,” Polskie Wydaw- nictwo Naukowe, Warszawa, 1975.
[102] N. Van der Putten, H. Stieperaere, C. Verbruggen and R. Ochyra, “Holocene Paleoecology and Climate History of South Georgia (Sub-Antarctica) Based on Macrofossil Record of Bryophytes and Seeds,” The Holocene, Vol. 14, No. 3, 2004, pp. 382-392.
[103] K. J. Chwedorzewska, “Poa annua L. in Antarctic: Searching for the Source of Introduction,” Polar Biology, Vol. 31, No. 3, 2008, pp. 263-268.
[104] E. Gianoli, P. Inostoza, A. Zuniga-Feest, M. Reyes-Diaz, L. A. Cavieres, L. A. Bravo and L. J. Corcuera, “Ecotypic Differentiation in Morphology and Cold Resistance in Populations of Colobanthus quitensis (Caryophyllaceae) from Andes of Central Chile and the Maritime Antarctic,” Arctic, Antarctic, and Alpine Research, Vol. 36, No. 4, 2004, pp. 484-489.
[105] R. A. Volkov, F. J. Medina, U. Zentgraf and V. Hemleben, “Molecular Cell Biology: Organization and Molecular Evolution of rDNA, Nucleolar Dominance and Nucleolus Structure,” In: K. Esser, et al., Eds., Progress in Botany, Vol. 65, Springer Verlag, Berlin, 2004, pp. 106-146.
[106] R. Volkov, S. Kostishin, F. Ehrendorfer and D. Schweizer, “Comparative Study of the Organization and Molecular Evolution of External Transcribed Spacer Region in rDNA of Two Nicotiana Species,” Plant Systematics and Evolution, Vol. 201, No. 1-4, 1996, pp. 117-129.
[107] G. W. Grimm, M. Schlee, N. Y. Komarova, R. A. Volkov and V. Hemleben, “Low-Level Taxonomy and Intrage- neric Evolutionary Trends in Higher Plants,” Nova Acta Leopoldina, Vol. 92, No. 342, 2005, pp. 129-145.
[108] J. Jobst, K. King and V. Hemleben, “Molecular Evolution of the Internal Transcribed Spacers (ITS1 and ITS2) and Phylogenetic Relationships among Species of Cucurbitaceae,” Molecular Phylogenetics and Evolution, Vol. 9, No. 2, 1998, pp. 204-219.
[109] C. Reisch, “Climatic Oscillations and the Fragmentation of Plant Populations Genetic Diversity within and Am- ong Populations of the Glacial Relict Plants Saxifraga paniculata (Saxifragaceae) and Sesleria albicans (Poa- ceae),” Dissertationes Botanicae Series, Band 359, Gebrüder Borntraeger Verlag, Berlin, 2002, pp. 1-113.
[110] M. Kropf, J. W. Kadereit and H. P. Comes, “Late Quaternary Distributional Stasis in the Submediterranean Mountain Plant Anthyllis montana L. (Fabaceae) Inferred from ITS Sequences and Amplified Fragment Length Polymorphism Markers,” Molecular Ecology, Vol. 11, No. 3, 2002, pp. 447-463.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.