On Optimal Sparse-Control Problems Governed by Jump-Diffusion Processes ()
1. Introduction
In this work, we tackle the issue of controlling a stochastic process by following an alternative approach already proposed in [9] - [11] , where the problem is reformulated from stochastic to deterministic. The key idea of this strategy is to focus on the probability density function (PDF) of the considered process, whose time evolution is modeled by the Fokker-Planck (FP) equation, also known as the Kolmogorov forward equation. The FP control approach is advantageous since it allows to model the action of the control over the entire space-time range of the underlying process, which is characterized by the shape of its PDF.
In the case of our JD process, the FP equation takes the form of a PIDE endowed with initial and boundary conditions. While the Cauchy data must be the initial distribution of the given random variable, the boundary conditions of a FP problem depend on the considered model. For the derivation of the FP equation and a discussion about boundary conditions, see [12] - [14] . Starting from the controlled stochastic differential model, the coefficients of the FP equation and thus the control mechanism are authomatically determined and thus an infinite dimensional optimal control problem governed by the FP PIDE related to a JD process is obtained. Since the control variable enters the state equation as a coefficient of the partial integro-differential operator, the resulting optimization problem is nonconvex.
This paper is organized as follows. In the next section, we discuss the functional setting of the FP problem modeling the evolution of the PDF of a JD stochastic process. In Section 3, we formulate our optimal control problems. Section 4 is devoted to the formulation of the corresponding first-order optimality systems. In Section 5, we discuss the discretization of the state and adjoint equations of the optimality system. In Section 6, we illustrate a proximal method for solving our optimal control problems. Section 7 is devoted to presenting results of numerical tests, including a discussion on the robustness of the algorithm to the choice of the parameters of the optimization problem. A section of conclusions completes this work.
2. The Fokker-Planck Equation of a Jump-Diffusion Process
In this section, we introduce a JD process and the corresponding FP equation that models the time evolution of the PDF of this process. Further, we discuss well-posed- ness and regularity of solutions to our FP problem.
We consider a time interval
and a stochastic process
with range in a bounded domain
. We assume that the set
is convex with Lipschitz boundary. The dynamic of X is governed by the following initial value problem
(1)
where
is a random variable with known distribution. The functions
and
represent the drift and the diffusion coefficients, respectively. We assume that
is full rank. Random increments to the process are given by a Wiener process
and a compound Poisson process
. The rate of jumps and the jump distribution are denoted with
and
, respectively.
Define
,
. Since
is full rank, a is posi-
tive definite, and hence there exists
such that
(2)
In this work, we consider a stochastic process with reflecting barriers. This assumption determines the boundary conditions for the FP equation corresponding to (1), see below. Define
and
, and denote with f the PDF of the process given by (1). It is known [12] [13] that the time evolution of f is modeled by the following FP of PIDE type
(3)
where the differential operator
and the integral operator
are defined as follows
(4)
and
(5)
respectively. The definition of g in (5) takes into account the presence of reflecting barriers and the dependence on the jump amplitude
, as we discuss later.
Notice that the differential operator
can be rewritten as follows
![]()
where
(6)
and
(7)
for each
. The function F in (6) represents the flux of the differential operator L, and −F is known in the literature as the probability current in case of stochastic processes without jumps [13] .
The PDF f of X in (1) in the bounded domain
is obtained by solving (3), endowed by suitable initial and boundary conditions. In our setting, the initial data
represents the PDF of the initial random variable
. The choice of a bounded domain with reflecting barriers results in the following zero-flux boundary conditions for the FP model
(8)
where
is the unit outward normal on
.
Notice that the flux F corresponds to the differential part of the FP equation, that is, to the drift and diffusion components of the stochastic process. In order to take into account the action of a reflecting barrier on the jumps, we consider a suitable definition of the kernel g, which can be conveniently illustrated in the one-dimensional case as follows.
Consider
and
. The kernel g in (5) takes the following form
(9)
where H is the Heaviside step function defined by
![]()
We normalize g and
such that
(10)
The next remark motivates the choice of the boundary conditions (8) and of the condition (10).
Remark 2.1. Assume (8) and (10). Provided that
is a PDF in
, then the solution to our FP problem satisfies the following conservation equation
![]()
That is, the total probability over the space domain
at each time
is preserved, in the sense that
![]()
Our FP problem is stated as follows
(11)
Next, we recall some definitions concerning the functional spaces needed to state the existence and uniqueness of solutions to (11). The space
refers to the functions that are continuous in
and it is endowed with the supremum norm. Let
be a constant,
. The space
refers to the functions that are Hölder continuous on
, with Hölder exponent
with respect to the space variable. The space
denotes all the functions that are bounded on
, up to a set of zero measure. The spaces
and
are defined as follows
(12)
These spaces are endowed with the following norms
![]()
where
denote multi-indeces.
We assume that the coefficients a and b in (4) satisfy the following conditions
(13)
for each
.
Notice that a and b must be defined on the closure
due to their role in the boundary conditions in (11). We assume that the following condition is satisfied
(14)
with
and
for
.
We have the following theorem [29] .
Theorem 2.1. Assume
. Let the coefficients a and b in L in (4) and that g satisfy the assumptions (13) and (14), respectively. Then, for given
, the initial-boundary value problem (11) admits a unique solution
.
Proof. See [29] . ![]()
Remark 2.2. Provided that
is also a PDF, it follows by standard arguments [29] that
for each
.
Consider the following spaces
,
. We denote with
the dual space of V and with
their canonical pairing. We consider the following Gelfand triple
, that exploits the natural isomorphism
between a Hilbert space with his dual. Each embedding is dense and continuous [17] .
Given the interval
and an arbitrary Banach space Z, we define the following spaces
(15)
(16)
which are also Banach spaces [17] equipped with the following norms
![]()
respectively. We consider the following space
(17)
which is a Hilbert space [17] with respect to the scalar product defined as follows
![]()
With this preparation, we can recall the following theorem [17] .
Theorem 2.2. The embedding
is continuous. Therefore, every
coincides with an element of
, up to a set of null measure.
The following proposition provides a useful a priori estimate of the solution to (11).
Proposition 2.3. Let
,
, and g satisfies (14). Then if f is a solution to (11), the following inequality holds
(18)
Proof. Consider the H inner product of the equation in (11) with f. Exploiting the properties of the Gelf and triple, we have
(19)
We make use of the following fact [17] ,
. The terms on the right-hand side in (19) are recast as follows.
First, we exploit the zero-flux boundary conditions in (11) and the coercivity of a as given in (2). Moreover, we make use of the following Cauchy inequality
![]()
which holds for each
and
. Integrating by parts and recalling the definition of F in (6), we have
![]()
We choose
, where
is defined in (2), and define
.
We have
thanks to (13).
Therefore we have
(20)
Recalling the definition of I in (5) and defining
, we have
![]()
Since
is bounded, we have
![]()
Therefore,
(21)
Define
. Note that c is a bounded time-dependent function. The estimates in (20) and (21) allow us to write (19) as follows
![]()
By applying the Gronwall inequality, we have
(22)
Next, we outline how to obtain an upper bound of
. We integrate (2) over
and then recall the definition of F in (6). We have
![]()
where we used the PIDE and the boundary condition of the FP problem in (11). Proceeding as above, we obtain
![]()
with
. This last estimate, together with (22), proves that
![]()
up to a redefinition of the constant
. The estimates of the other addends in (18) follow after some calculation with arguments as in [9] [17] . ![]()
Proposition 2.4. Assume (13) and
. Then the unique solution to (11) belongs to
, with
. Moreover,
.
Proof. The statement follows from the a priori estimates of Proposition 2.3 and Theorem 2.2. ![]()
We define
, where
is the initial data in (11). The initial-boundary value problem (11) can be stated as
, where the map
is defined as follows
(23)
with F and I defined in (6) and (5), respectively.
3. Two Fokker-Planck Optimal Control Problems
In this section, we define our optimal control problems governed by (23) and prove the existence of at least an optimal solution.
We consider a control mechanism that acts on the drift function
by means of a time-dependent control
. Therefore we refer to (23) as
. We assume that b is a smooth function of its arguments and that assumption (13) is fulfilled. We remark that a time-dependent control function is a natural choice considering that it originates from the stochastic differential model where the time is the only independent variable.
We assume the presence of control constraints given by
, with
. We denote
(24)
(25)
Remark 3.1. The subset
is nonempty, closed, and convex.
Let
and
be positive constants. We consider the following objective
(26)
The term
in (26) represents a tracking objective that involves the expectation value of
,
, and a desired trajectory or a discrete set of values (e.g. measurements). We investigate the following two cases.
1) Given a set of values
at different times
,
, we have
(27)
2) Given a square-integrable function
, we have
(28)
The norms in (26) are defined as follows
![]()
Remark 3.2. The choice of a bounded time interval I ensures that the L1-norm is finite whenever
.
Remark 3.3. The functional
is convex and continuous with respect to
in the
norm.
We investigate the following optimal control problem (s)
(29)
In order to discuss the existence and uniqueness of solutions to (29), we consider the control-to-state operator
, that maps a given
into
, where
satisfies
. Note that the definition of
in (25) ensures that b satisfies (13). Because of Theorem 2.1, the operator
is well defined.
The next proposition can be proved by using standard arguments [9] [17] .
Proposition 3.1. The mapping
solution to (11) is Fréchet differentiable and the directional derivative
satisfies the follow- ing initial-boundary problem
(30)
where b is the drift in (1) and F is defined in (6).
The constrained optimization problem (29) can be transformed into an unconstrained one as follows
(31)
where
is the so-called reduced cost functional.
The solvability of (31) is ensured by the next theorem, whose proof adapts techniques given in [30] [31] and [17] .
Theorem 3.2. There exists at least one optimal pair
that solves (29), such that
solves (31) and
.
Proof. The functional
in (31) is bounded from below and therefore we can define
. Let
be a minimizing sequence, such that
.
We have that
is a convex, closed, and bounded subset of the reflexive Banach space
. Hence,
is weakly sequentially compact and we can extract a subsequence
such that
.
The weakly lower convergent sequence
gives rise to the sequence
, defined by
. Since the embedding
is
compact, there exists a subsequence
and
such that
converges strongly to
. The fact
follows from standard arguments. Note that each couple
satisfies
by definition. Next, we want to
pass to the limit in
.
Thanks to the estimate (18) in Proposition 2.3, the sequence
is bounded in
and therefore weakly convergent to
. Define
. The boundedness of B as in (7) and the smoothness of b with respect to u together with (18), en-
sures that
and
converge weakly to
and
, respectively, where the norm in
has been considered. The weak convergence of
to
follows from similar arguments [31] . These observations lead to the conclusion that the limit
solves (11), with
. Therefore, the constraint
is satisfied.
Moreover, the convexity of
ensures that
![]()
and therefore the pair
is a minimizer for the problem (29).
Remark 3.4. The uniqueness of the control
can not be stated a priori since
is non convex.
4. Two First-Order Optimality Systems
We follow the standard approach [17] [23] [32] of characterizing the solution of our optimal control problem as the solution to first-order optimality conditions that constitute the optimality system.
Consider the reduced problem (31) and write the reduced functional
as
,
,
where
![]()
(32)
Remark 4.1. The functional
is smooth and possibly nonconvex, while
is convex and nonsmooth.
The following definitions are needed in order to determine the first-order optimality system. If
is finite at a point u, the Fréchet subdifferential of
at u is defined as follows [32] . We have
(33)
where
is the dual space of
. Any element
is called a subgradient. In our framework, we have
![]()
since
is Fréchet differentiable at u; this follows from standard arguments [17] [30] . Moreover, for each
, it holds that
; see [26] .
The following proposition gives a necessary condition for a local minimum of
.
Proposition 4.1. If
, with
and
given by (4.1), attains a local minimum in
, then
![]()
or equivalently
![]()
Proof. Since
is convex,
, for each
and
. Since
is a local minimum, we have
![]()
for v sufficiently close to
. Exploiting the convexity of
, we have
![]()
Dividing by
and considering the limit
, we obtain
(34)
Dividing by
and considering the following limit
![]()
we conclude that
, according to the definiton in (33).
By using results in [22] [32] , we have that (34) implies that each
, with
a local minimum, satisfies the following inequality
(35)
Moreover, recalling the definition of
in (32) and exploiting the isomorphism
, the inclusion
gives the following
(36)
A pointwise analysis of (35), which takes into account the definition (25) of the admissible controls, ensures the existence of two nonnegative functions
that play the role of Lagrange multipliers [17] . The previous considerations lead to the following proposition, that states the optimality system for the reduced problem (31).
Proposition 4.2. The optimal solution
of the minimization problem (31) with
defined in (32), is characterized by the existence of
such that
(37)
We refer to the last three conditions in (37) for the pair
as the complementarity conditions.
The differentiability of
,
and
with respect to
and
allows us to compute
in (37) within the adjoint approach. By definition, for each
, we have
![]()
By considering the total derivative of
, we have
![]()
Therefore, we obtain
![]()
Defining the adjoint variable p as the solution to the following adjoint problem
(38)
we obtain the following reduced gradient
(39)
After some calculation, we have that (38) can be rewritten as the following adjoint system
(40)
where
and
depend on the choice of D in (27) and (28). When D is given by (27),
and
, for each
. On the other hand, when D is given by (28),
and
.
The operator
is defined as follows
![]()
The terminal boundary-value problem (40) admits a unique solution
thanks to the assumptions (13) and (14), following the same arguments as in Theorem 2.1 [29] .
The reduced gradient in (39), for given u, f, and p, takes the following form
(41)
The complementarity conditions in (37) can be recast in a more compact form, as follows. We define
. For each
, we define the following quantity
![]()
The complementarity conditions in (37) and the inequalities related to the Lagrange multipliers
and
, together with the requirement
, are equivalent to
; see, e.g., [22] .
The previous considerations can be summarized in the following propositions.
Proposition 4.3. (Optimality system for a discrete-in-time tracking functional)
A local solution
of (29) with D given by (27) is characterized by the existence of
, such that the following system is satisfied
(42)
Proposition 4.4. (Optimality system for a continuous-in-time tracking functional)
A local solution
of (29) with D given by (28) is characterized by the existence of
, such that the following system is satisfied
(43)
5. Numerical Approximation of the Optimality Systems
In this section, we discuss the discretization of the optimality systems given in (42) and (43). For simplicity, we focus on a one-dimensional case with
. We de-
fine
,
,
, and
,
. The space and time grids
are defined as follows
![]()
![]()
Notice that a cell-centered space discretization is considered with cells midpoints at
,
, and cell faces at
.
The approximation of the forward and backward FP PIDEs is based on a discretization method discussed in [33] , where a convergent and conservative numerical scheme for solving the FP problem of a JD process is presented. This discretization scheme is obtained based on the so-called method of lines (MOL) [34] . The differential operator in (11) is discretized by applying the Chang-Cooper (CC) scheme [35] [36] . Setting
, and
, the discretization
of the differential operator is carried out as follows
![]()
where
![]()
The zero-flux boundary conditions are implemented referring to the points
and
. The integral addend is approximated by the midpoint rule. After spacial discretization, the forward FP PIDE problem takes the following form
(44)
where
. The matrices
and
correspond to the CC scheme and to the quadrature rule, respectively. The time integration of (44) is carried out with the combination of the Strang-Marchuk (SM) splitting scheme [37] [38] together with a predictor-corrector scheme [39] . We refer to [40] for a detailed introduction to splitting methods. With this choice, the numerical scheme solving (11) is second-order convergent both in space and time with respect to the
norm. Notice that the chosen numerical method for the FP problem must ensure that the PDF solution is nonnegative and that the total probability remains constant along the time evolution. See [33] for all details and numerical analysis results.
The DBO approach results in the following approximations
![]()
![]()
together with the midpoint quadrature formula applied to
in (40). We have the following semi-discretized system
(45)
The time integration of (45) is carried out with the combination of the SM splitting with a predictor corrector scheme, as in (44).
6. A Proximal Optimization Scheme
In this section, we discuss a proximal optimization scheme for solving (31). This scheme and the related theoretical discussion follow the work in [19] [27] . Proximal methods conveniently exploit the additive structure of the reduced objective, and in our framework, we have that the reduced functional
is given by the sum of a nonconvex smooth function
and a convex nonsmooth function
as in (32).
For our discussion, we need the following definitions and properties.
Definition 6.1. Let Z be a Hilbert space and l a convex lower semi continuous function,
. The proximity operator
of l is defined as follows
![]()
Proposition 6.1. Let Z be a Hilbert space and l a convex lower semi continuous function,
, with proximity operator
. The following relation holds
(46)
where
is the subdifferential defined in (33).
Proof. See [27] .
Proposition 6.2. The solution
of (31) satisfies
(47)
for each
.
Proof. From Proposition 4.7 and by using (46), we have
![]()
The relation (47) suggests that a solution procedure based on a fixed point iteration should be pursued. We discuss how such algorithm can be implemented.
In the following, we assume that
in (32) has a locally Lipschitz-continuous gradient
as follows
(48)
for each
,
neighborhood of u, with L a Lipschitz continuity constant. It is shown in [28] that (48) implies the following inequality
![]()
for each
, and hence
(49)
Inequality (49) is the starting point for the formulation of a proximal scheme, whose strategy consists of minimizing the right-hand side in (49). One can prove the following equality
(50)
Recall the definition of
in (32). The following lemma gives an explicit expression for the right-hand side in (50).
Lemma 6.3. Let
be as in (25). Then
![]()
where the projected soft thresholding function
is defined as follows
![]()
Proof. See [19] . ![]()
Based on this lemma, we conclude the following
![]()
which can be taken as starting point for a fixed-point algorithm as follows
(51)
where
is the local Lipschitz continuity constant defined in (48). Such method has been investigated in [19] [25] [27] . In this work, we apply an extension of (51), which takes for each iteration k the following form
(52)
with
. This method has been proposed in [28] . Our inertial proximal method is summarized in the following algorithm.
Algorithm 1 (Inertial proximal method).
Input: initial guess
,
,
,
, tolerance tol, Lipschitz constant L.
1) While
, do:
(a) Evaluate
according to Algorithm 2.
(b) Update
until
![]()
where
![]()
(c) Set
.
(d) Compute E according to (42) or (43).
(e) If
, break.
(f)
.
Remark 6.1. The backtracking scheme in Algorithm 1 provides an estimation of the upper bound of the Lipschitz constant in (48), since it is not known a priori. The initial guess for L is chosen as follows. Given a small variation
of u, we have
![]()
Algorithm 2 (Evaluation of the gradient).
Input:
, initial value
at time
, terminal value
at time
.
1) Compute
, given
and
.
2) Compute
.
3) Evaluate
according to (41).
Next, we discuss the convergence of our algorithm, using some existing results [28] [41] .
Proposition 6.4. The sequence
generated by (52) satisfies the following properties.
・ The sequence
converges in
.
・ There exists a weakly convergent subsequence
.
Definition 6.2. The proximal residual r is defined as follows
(53)
Proposition 6.12 tells us that
in
whenever u solves (31). The next proposition establish a connection between the condition
and the solution provided by Algorithm 1; see, e.g., [19] .
Proposition 6.5. Let
be the sequence generated by Algorithm 1. Then the following holds
![]()
7. Numerical Experiments
In this section, we present results of numerical experiments to validate the performance of our optimal control framework. Our purpose is to determine a sparse control
such that the expected value of the process X defined by (1) minimizes the quantity defined by (27) and (28).
We implement the discretization scheme and the algorithm described in Section 5. We take
and
, and assume that the initial probability density function
is given,
. The compound Poisson process corresponds to the choice
and
. We take
and
. In case of (27), we consider
. In the case of (28), we take
. We choose
and
.
In the first series of experiments, we consider the setting with
and
in (32). Further, we do consider constraints on the control. Corresponding to this choice and to the discrete-in-time tracking functional (27), we report in Figure 1 and Figure 2 the solution for the state and the adjoint variables, respectively. On the other hand, using the continuous-in-time tracking functional (28), we obtain the state and the adjoint variables depicted in Figure 3 and Figure 4, respectively.
Also for the case
and both tracking functionals, we report in Table 1 and
![]()
Figure 1. State variable in the case of the discrete-in-time tracking functional defined in (27), with
.
![]()
Figure 2. Adjoint variable in case of the discrete-in-time tracking functional defined in (27), with
.
![]()
Figure 3. State variable in the case of the continuous-in-time tracking functional defined in (28), with
.
![]()
Figure 4. Adjoint variable in case of the continuous-in-time tracking functional defined in (28), with
.
Table 2 the values of the tracking error for different values of the weight
. As expected, the tracking improves as the value of this optimization parameter becomes smaller. In Figure 1 and Figure 3, we can see that the optimal control u drives the expected mean value of the PDF towards the mean values given by
and
, respectively.
Next, we investigate the behavior of the optimal solution considering the full optimization setting, that is, the case when the L1-cost actively enters in the optimization process, i.e.
, and the control is constrained by the bounds
in (25). For simplicity, we discuss only the case with
.
In Figures 5-7, we depict the optimal controls for three different choices of values of
and considering the discrete-in-time tracking functional given by (27). In Figures 8-10, we show the optimal controls for three different choices of values of
and considering the continuous-in-time tracking functional given by (28). In both cases, we can clearly see that increasing the value of the parameter
significantly increases the sparsity of the solution, as expected.
Finally, in the Table 1 and Table 2, we also report values of the tracking error when both the L2- and L1-costs are considered. For a direct comparison with the first series of experiments, we consider an unconstrained control. We find that already with a small value of
, the tracking ability of the optimization scheme worsen for both choices of the tracking functional.
![]()
Table 1. Tracking error of the discrete-in-time functional
given by (27).
![]()
Table 2. Tracking error of the continuous-in-time functional
given by (28).
![]()
Figure 5. Optimal control with
and tracking objective given by (27).
![]()
Figure 6. Optimal control with
and tracking objective given by (27).
![]()
Figure 7. Optimal control with
and tracking objective given by (27).
![]()
Figure 8. Optimal control with
and tracking objective given by (28).
![]()
Figure 9. Optimal control with
and tracking objective given by (28).
![]()
Figure 10. Optimal control with
and tracking objective given by (28).
8. Conclusion
A framework for the optimal control of probability density functions of jump-diffusion processes was discussed. In this framework, two different, discrete-in-time and continuous-in-time, tracking functionals were considered together with a sparsity promoting L1-cost of the control. The resulting nonsmooth minimization problems governed by a Fokker-Planck partial integro-differential equation were investigated. The existence of at least an optimal control solution was proven. To characterize and compute the optimal controls, the corresponding first-order optimality systems were derived and their numerical approximation was discussed. These optimality systems in combination with a proximal scheme allowed to formulate an efficient solution procedure, which was also theoretically discussed. Results of numerical experiments were presented to validate the computational effectiveness of the proposed method.
Acknowledgements
Supported by the European Union under Grant Agreement Nr. 304617 “Multi-ITN STRIKE―Novel Methods in Computational Finance”. This publication was supported by the Open Access Publication Fund of the University of Würzburg. We thank very much the Referee for improving remarks.