Share This Article:

Synthesis and Characterization of Sb65Se35-xGex Alloys

Full-Text HTML Download Download as PDF (Size:347KB) PP. 950-956
DOI: 10.4236/msa.2011.27127    4,585 Downloads   7,938 Views   Citations

ABSTRACT

Density, chemical, structural and vibrational studies of Sb65Se35-xGex system with 0 ≤ x ≤ 20 produce by melt-quench technique were carried out using Archimedes method, Energy Dispersive Spectroscopy (EDS), X-ray diffraction (XRD) and Raman spectroscopy. All specimens are polycrystalline in nature as confirmed by XRD pattern. The compositional dependence of the XRD and Raman spectra suggests the presence of two basic structural units, SbSe3 pyramids with three-fold coordinated Sb atom at the apex and GeSe4 tetrahedrons. The compositional dependence of these physic Chemical properties of the investigated samples are investigated and discussed in light of many models. PACS: 68.55. Ln; 61.50. Ks; 68.55.Jk

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Saleh, "Synthesis and Characterization of Sb65Se35-xGex Alloys," Materials Sciences and Applications, Vol. 2 No. 7, 2011, pp. 950-956. doi: 10.4236/msa.2011.27127.

References

[1] H. J. Borg, M. V. Shijndel, J. C. N. Ripers, M. H. R. Lankhorst, G. Zhou, M. J. Dekker, I. P. D. Ubbens and M. Kuijper, “Phase-Change Media for High-Numerical-Aperture and Blue-Wavelength Recording,” Japanese Journal of Applied Physics, Vol. 40, No. 3B, 2001, pp. 1592- 1597. doi:10.1143/JJAP.40.1592
[2] P. K. Khulbe, T. Hurst, M. Horie and M. Mansuripur, “Crystallization Behavior of Ge-Doped Eutectic Sb70Te30 Films in Optical Disks,” Applied Optics, Vol. 41, No. 29, 2002, pp. 6220-6229. doi:10.1364/AO.41.006220
[3] N. Oomachi, S. Ashida, N. Nakamura, K. Yuso and K. Ichihara, “Recording Characteristics of Ge Doped Eutectic SbTe Phase Change Discs with Various Compositions and Its Potential for High Density Recording” Japanese Journal of Applied Physics, Vol. 41, No. 3B, 2002, pp. 1695-1697. doi:10.1143/JJAP.41.1695
[4] M. H. R. Lankhorst, L. V. Pieterson, M. V. Shijndel, B. A. J. Jacobs and J. C. N. Rijpers, “Prospects of Doped Sb-Te Phase-Change Materials for High-Speed Recording,” Japanese Journal of Applied Physics, Vol. 42, No. 2B, 2003, pp. 863-868. doi:10.1143/JJAP.42.863
[5] Y.-C. Her and Y.-S. Hsu, “Optical Properties and Crystallization Characteristics of Ge-Doped Sb70Te30 Phase Change Recording Film,” Japanese Journal of Applied Physics, Vol. 42, No. 2B, 2003, pp. 804-808. doi:10.1143/JJAP.42.804
[6] B. J. Kooia and J. T. M. De Hosson, “On the Crystallization of Thin Films Composed of Sb3.6Te with Ge for Rewritable Data Storage,” Japanese Journal of Applied Physics, Vol. 95, No. 9, 2004, pp. 4714-4722.
[7] T. Matsunaga and N. Yamada, “Crystallographic Studies on High-Speed Phase-Change Materials Used for Rewritable Optical Recording Disks,” Japanese Journal of Applied Physics, Vol. 43, No. 7B, 2004, pp. 4704-4712. doi:10.1143/JJAP.43.4704
[8] L. V. Pieterson, M. H. R. Lankhorst, M. V. Schijndel, A. E. T. Kuiper and J. H. J. Roosen, “Phase-Change Recording Materials with a Growth-Dominated Crystallization Mechanism: A Materials Overview,” Japanese Jour- nal of Applied Physics, Vol. 97, No. 8, 2005, pp. 083520-083527.
[9] M. H. R. Lankhorst, B. W. S. M. M. Ketelaars and R. A. M. Wolters, “Low-Cost and Nano Scale Non-volatile Memory Concept for Future Silicon Chips,” Nature Mater, Vol. 4, No. 4, April 2005, pp. 347-352. doi:10.1038/nmat1350
[10] S. A. Saleh and A. Al-Hajry, “Optical Properties of Ge Doped Eutectic Sbse Thin Films,” Paper to be Presented in the 5th Meeting of the Saudi Physical Society (SPS5), Abha, October 2010, pp. 25-27.
[11] A. Madan and M. P. Shaw, “The Physics and Applications of Amorphous Semiconductors,” Boston, Massach- usetts, 1988.
[12] A. Feltz, “Amorphous Inorganic Materials and Glasses,” Weinheim, Germany, 1993.
[13] S. O. Kasap, “Handbook of Imaging Materials,” 2nd Edition, Marcel Dekker, New York, 2002, p. 329.
[14] K. Tanaka, “Encyclopedia of Materials,” Elsevier, Oxford, 2001, p. 1123.
[15] V. I. Mikla and V. V. Mikla, “Metastable States in Amorphous Chalcogenide Semiconductors,” Springer-Verlag, Berlin Heidelberg, Vol. 128, 2010, p. 18. doi:10.1007/978-3-642-02745-1
[16] http://www.knovel.com/web/portal/periodic_table.
[17] V. Pamukchieva and E. Savova, “Influence of Illumination on the Microhardness and Elastic Properties of Thin Gexsb40-Xs60 Films,” Thin Solid Films, Vol. 347, No. 1-2, 1999, pp. 226-228. doi:10.1016/S0040-6090(99)00017-6
[18] M. Fadel, “The Physical Properties and the Chemical Bond Approach for Se-Ge-As Amorphous Chalcogenide Glasses,” Vacuum, Vol. 48, No. 1, 1997, pp. 73-83. doi:10.1016/S0042-207X(96)00229-1
[19] J. Bicerano and S. R. Ovshinsky, “Chemical Bonding and the Nature of Glass Structure,” Reidel Publishing Company, Holland, 1986.
[20] Ambika and P. B. Barman, “Theoretical Prediction of Physical Parameters of Ge-Te-Bi Glassy Alloys,” Journals Ovonic Receives, Vol. 3, No. 1, 2007, pp. 21-27.
[21] http://www.periodni.com/en/index.html.
[22] A. Dahshan and K. A. Aly, “Characterization of New Quaternary Chalcogenide As-Ge-Se-Sb Thin Films,” Phi- losophical Magazine, Vol. 88, No. 3, 2008, pp. 361-372. doi:10.1080/14786430701846214
[23] J. C. Phillips, “Topology of Covalent Non-crystalline Solids I: Short-Range Order in Chalcogenide Alloys,” Journal of Non-Crystalline Solids, Vol. 34, No. 2, 1979, pp. 153-181. doi:10.1016/0022-3093(79)90033-4
[24] P. Tronc, M. Bensoussan, A. Brenac and C. Sebenne, “Optical-Absorption Edge and Raman Scattering in Gex- Se1-x Glasses,” Physical Reviews B, Vol. 8, No. 12-15, 1973, pp. 5947-5956. doi:10.1103/PhysRevB.8.5947
[25] G. Lucovsky, F. L. Galeener, R. C. Keezer, R. H. Geils and H. A. Six, “Structural Interpretation of the Infrared and Raman Spectra of Glasses in the Alloy System Ge1-Xsx,” Physical Reviews B, Vol. 10, No. 12, 1974, pp. 5134-5146. doi:10.1103/PhysRevB.10.5134
[26] J. Biecerano and S. R. Ovshinsky, “Chemical Bond Approach to the Structures of Chalcogenide Glasses with Reversible Switching Properties,” Journal of Non-Crysta- lline Solids, Vol. 74, No. 1, 1985, pp. 75-84. doi:10.1016/0022-3093(85)90402-8
[27] M. Yamaguchi, “The Relationship between Optical Gap and Chemical Composition in Chalcogenide Glasses,” Philosophical Magazine Part B, Vol. 51, No. 6, 1985, pp. 651-663. doi:10.1080/13642818508243153
[28] A. F. Ioffe and A. R. Regel, “Semiconductivity in Pyrite, Marcasite and Arsenopyrite Phases,” Progress Semicond, Vol. 4No. 239, 1960.
[29] A. El-Korashy, et al. “Optical, Electrical and the Related Parameters of Amorphous Ge-Bi-Se Thin Films,” Physica B, Vol. 365, 2005, pp. 55-64.
[30] L. Pauling, “The Nature of the Chemical Bond,” Cornell University Press, Ithaca, 1960.
[31] V. Pamukchieva, et al., “Compositional Dependence of the Optical Properties of New Quaternary Chalcogenide Glasses of Ge-Sb-(S,Te) System,” Optical Materials, Vol. 32, No. 1, 2009, pp. 45-48. doi:10.1016/j.optmat.2009.06.003
[32] S. Mahadevan, A. Giridhar and A. K. Singh, “Studies on some Ge-Se-Te Glasses,” Journal of Non-crystalline Solids, Vol. 103, No. 2-3, 1988, pp. 179-194. doi:10.1016/0022-3093(88)90197-4
[33] J. C. Phillips and M. F. Thorpe, “Constraint Theory, Vector Percolation and Glass Formation,” Solid State Commun, Vol. 53, No. 8, 1985, pp. 699-702. doi:10.1016/0038-1098(85)90381-3
[34] M. Kastner, “Bonding Bands, Lone-Pair Bands, and Impurity States in Chalcogenide Semiconductors,” Physicals Review Letters, Vol. 28, No. 6, 1972, pp. 355-357. doi:10.1103/PhysRevLett.28.355
[35] V. Agafonov, N. Rodier, R. Ceolin, R. Bellissent, C. Bergman and J. P. Gaspard, “Structure of Sb2Te,” Acta Crystallographica Section C, Vol. 47, No. 6, 1991, pp. 1141-1143. doi:10.1107/S0108270190013348
[36] E. Prokhorov, A. Mendoza-Galván, J. González-Hernán- dez and B. Chao, “Effects of Ge Addition on the Optical and Electrical Properties of Eutectic Sb70Te30 Films,” Journal of Non-Crystalline Solids, Vol. 353, No. 18-21, 2007, pp. 1870-1874. doi:10.1016/j.jnoncrysol.2007.02.017
[37] S. Sen, E. L. Gjersing and B. G. Aitken, “Physical Properties of GexAS2xTe100-3x Glasses and Raman Spectroscopic Analysis of Their Short-Range Structure,” Journal of Non-crystalline Solids, Vol. 356, No. 41-42, 2010, pp. 2083-2088. doi:10.1016/j.jnoncrysol.2010.08.013
[38] P. Kumar, R. Thangaraj and T. S. Sathiaraj, “Effect of Sn Addition on the Optical Gap and Far-Infrared Reflectivity Spectra of Amorphous Sb-Se,” Journal of Non-Crystalli- ne Solids, Vol. 356, No. 31-32, 2010, pp. 1611-1613. doi:10.1016/j.jnoncrysol.2010.05.046
[39] L. Petit, et al., “Effect of the Substitution of S for Se on the Structure of the Glasses in the System Ge0.23Sb0.07- S0.7-XSex,” Journals of Physics and Chemistry of Solids, Vol. 66, No. 10, 2005, pp. 1788-1794. doi:10.1016/j.jpcs.2005.08.090
[40] O. Kostadinova and S. N. Yannopouls, “Raman Spectroscopic Study of SbxSe100-X Phase-Separated Bulk Glasses,” Journal of Non-Crystalline Solids, Vol. 355, No. 37-42, 2009, pp. 2040-2044.
[41] J. Gutwirth, et al., “Influence of Silver Concentration in Agx(Sb0.33S0.67)100-X Thinamorphous Films on Photo-indu- ced Crystallization,” Journal of Non-Crystalline Solids, Vol. 353, No. 13-15, 2007, pp. 1431-1436. doi:10.1016/j.jnoncrysol.2006.11.026

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.