Share This Article:

Preclinical Evaluation of CD40-Directed Immunotherapy in B-Cell Lymphoma Using [18F]Fluorothymidine-PET

Full-Text HTML XML Download Download as PDF (Size:807KB) PP. 17-28
DOI: 10.4236/ami.2015.52002    3,064 Downloads   3,643 Views   Citations


Background: Inhibition of the lymphoma surface antigen CD40 by the antagonistic CD40 antibody NVP-HCD122 (HCD122) demonstrates activity in various lymphoma subtypes. In this preclinical in vivo study we examined the suitability of positron emission tomography (PET) using the thymidine analogue 3’-deoxy-3’-[18F]fluorothymidine (FLT) for early response assessment upon HCD122 treatment in diffuse large B cell lymphoma (DLBCL). Methods: Immunodeficient mice bearing human DLBCL xenografts (SU-DHL-4) received weekly intraperitoneal injections of HCD122. Tumor growth was followed up until Day 14. Molecular imaging with FLT-PET was performed before (Day 0) and after start of therapy (Day 2 and Day 7). On Day 14 lymphoma xenografts were explanted for immunohistochemical analysis to correlate PET findings with CD40 surface expression on tumor tissue. Results: Treatment with HCD122 significantly delayed tumor growth resulting in a tumor growth inhibition of 45% on Day 14. Significant reduction of tumor-to-background ratio (TBR) of FLT-PET was seen in treated animals on Day 7 and preceded change of tumor volume, thus predicting therapy response to HCD122. Immunohistochemical analysis of xenografts revealed significantly higher CD40 expression on treated than on untreated tissue. Moreover, we found a significant correlation between CD40 expression and FLT-PET response for xenograft tumor treated with HCD122. Conclusions: Treatment of DLBCL with the antagonistic CD40 antibody HCD122 can be monitored with FLT-PET as early as seven days after commencement of therapy and seems to increase CD40 expression on tumor tissue.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Graf, N. , Li, Z. , Herrmann, K. , Aichler, M. , Slawska, J. , Walch, A. , Peschel, C. , Schwaiger, M. , Buck, A. , Dechow, T. and Keller, U. (2015) Preclinical Evaluation of CD40-Directed Immunotherapy in B-Cell Lymphoma Using [18F]Fluorothymidine-PET. Advances in Molecular Imaging, 5, 17-28. doi: 10.4236/ami.2015.52002.


[1] Coiffier, B., Lepage, E., Briere, J., Herbrecht, R., Tilly, H., Bouabdallah, R., Morel, P., Van Den Neste, E., Salles, G., Gaulard, P., Reyes, F., Lederlin, P. and Gisselbrecht, C. (2002) CHOP Chemotherapy plus Rituximab Compared with CHOP Alone in Elderly Patients with Diffuse Large-B-Cell Lymphoma. The New England Journal of Medicine, 346, 235-242.
[2] Dalle, S., Dupire, S., Brunet-Manquat, S., Reslan, L., Plesa, A. and Dumontet, C. (2009) In Vivo Model of Follicular Lymphoma Resistant to Rituximab. Clinical Cancer Research, 15, 851-857.
[3] Hiraga, J., Tomita, A., Sugimoto, T., Shimada, K., Ito, M., Nakamura, S., Kiyoi, H., Kinoshita, T. and Naoe, T. (2009) Down-Regulation of CD20 Expression in B-Cell Lymphoma Cells after Treatment with Rituximab-Containing Combination Chemotherapies: Its Prevalence and Clinical Significance. Blood, 113, 4885-4893.
[4] Planken, E.V., Willemze, R. and Kluin-Nelemans, J.C. (1996) The Role of the CD40 Antigen on Malignant B Cells. Leuk Lymphoma, 22, 229-235.
[5] Johnson, P.W., Watt, S.M., Betts, D.R., Davies, D., Jordan, S., Norton, A.J. and Lister, T.A. (1993) Isolated Follicular Lymphoma Cells Are Resistant to Apoptosis and Can Be Grown in Vitro in the CD40/Stromal Cell System. Blood, 82, 1848-1857.
[6] Ghia, P., Boussiotis, V.A., Schultze, J.L., Cardoso, A.A., Dorfman, D.M., Gribben, J.G., Freedman, A.S. and Nadler, L.M. (1998) Unbalanced Expression of bcl-2 Family Proteins in Follicular Lymphoma: Contribution of CD40 Signaling in Promoting Survival. Blood, 91, 244-251.
[7] Andersen, N.S., Larsen, J.K., Christiansen, J., Pedersen, L.B., Christophersen, N.S., Geisler, C.H. and Jurlander, J. (2000) Soluble CD40 Ligand Induces Selective Proliferation of Lymphoma Cells in Primary Mantle Cell Lymphoma Cell Cultures. Blood, 96, 2219-2225.
[8] Clodi, K., Asgary, Z., Zhao, S., Kliche, K.O., Cabanillas, F., Andreeff, M. and Younes, A. (1998) Coexpression of CD40 and CD40 Ligand in B-Cell Lymphoma Cells. British Journal of Haematology, 103, 270-275.
[9] Tournilhac, O., Santos, D.D., Xu, L., Kutok, J., Tai, Y.T., Le Gouill, S., Catley, L., Hunter, Z., Branagan, A.R., Boyce, J.A., Munshi, N., Anderson, K.C. and Treon, S.P. (2006) Mast Cells in Waldenstrom’s Macroglobulinemia Support Lymphoplasmacytic Cell Growth through CD154/CD40 Signaling. Annals of Oncology, 17, 1275-1282.
[10] Pham, L.V., Tamayo, A.T., Yoshimura, L.C., Lo, P., Terry, N., Reid, P.S. and Ford, R.J. (2002) A CD40 Signalosome Anchored in Lipid Rafts Leads to Constitutive Activation of NF-KappaB and Autonomous Cell Growth in B Cell Lymphomas. Immunity, 16, 37-50.
[11] Younes, A., Snell, V., Consoli, U., Clodi, K., Zhao, S., Palmer, J.L., Thomas, E.K., Armitage, R.J. and Andreeff, M. (1998) Elevated Levels of Biologically Active Soluble CD40 Ligand in the Serum of Patients with Chronic Lymphocytic Leukaemia. British Journal of Haematology, 100, 135-141.
[12] Luqman, M., Klabunde, S., Lin, K., Georgakis, G.V., Cherukuri, A., Holash, J., Goldbeck, C., Xu, X., Kadel 3rd, E.E., Lee, S.H., Aukerman, S.L., Jallal, B., Aziz, N., Weng, W.K., Wierda, W., O’Brien, S. and Younes, A. (2008) The Antileukemia Activity of a Human Anti-CD40 Antagonist Antibody, HCD122, on Human Chronic Lymphocytic Leukemia Cells. Blood, 112, 711-720.
[13] Fanale, M., Assouline, S., Kuruvilla, J., Solal-Céligny, P., Heo, D.S., Verhoef, G., Corradini, P., Abramson, J.S., Offner, F., Engert, A., Dyer, M.J., Carreon, D., Ewald, B., Baeck, J., Younes, A. and Freedman, A.S. (2014) Phase IA/II, Multicentre, Open-Label Study of the CD40 Antagonistic Monoclonal Antibody Lucatumumab in Adult Patients with Advanced Non-Hodgkin or Hodgkin Lymphoma. British Journal of Haematology, 164, 258-265.
[14] Walsh, K., McKinney, M.S., Love, C., Liu, Q., Fan, A., Patel, A., Smith, J., Beaven, A., Jima, D.D. and Dave, S.S. (2013) PAK1 Mediates Resistance to PI3K Inhibition in Lymphomas. Clinical Cancer Research, 19, 1106-1115.
[15] Shields, A.F., Grierson, J.R., Dohmen, B.M., Machulla, H.J., Stayanoff, J.C., Lawhorn-Crews, J.M., Obradovich, J.E., Muzik, O. and Mangner, T.J. (1998) Imaging Proliferation in Vivo with [F-18]FLT and Positron Emission Tomography. Nature Medicine, 4, 1334-1336.
[16] Rasey, J.S., Grierson, J.R., Wiens, L.W., Kolb, P.D. and Schwartz, J.L. (2002) Validation of FLT Uptake as a Measure of Thymidine Kinase-1 Activity in A549 Carcinoma Cells. Journal of Nuclear Medicine, 43, 1210-1217.
[17] Wagner, M., Seitz, U., Buck, A., Neumaier, B., Schultheiss, S., Bangerter, M., Bommer, M., Leithauser, F., Wawra, E., Munzert, G. and Reske, S.N. (2003) 3’-[18F]Fluoro-3’-Deoxythymidine ([18F]-FLT) as Positron Emission Tomography Tracer for Imaging Proliferation in a Murine B-Cell Lymphoma Model and in the Human Disease. Cancer Research, 63, 2681-2687.
[18] Herrmann, K., Wieder, H.A., Buck, A.K., Schoffel, M., Krause, B.J., Fend, F., Schuster, T., zum Büschenfelde, C.M., Wester, H.J., Duyster, J., Peschel, C., Schwaiger, M. and Dechow, T. (2007) Early Response Assessment using 3’-Deoxy-3’-[18F]Fluorothymidine-Positron Emission Tomography in High-Grade Non-Hodgkin’s Lymphoma. Clinical Cancer Research, 13, 3552-3558.
[19] Herrmann, K., Buck, A.K., Schuster, T., Rudelius, M., Wester, H.J., Graf, N., Scheuerer, C., Peschel, C., Schwaiger, M., Dechow, T. and Keller, U. (2011) A Pilot Study to Evaluate 3’-Deoxy-3’-18F-Fluorothymidine PET for Initial and Early Response Imaging in Mantle Cell Lymphoma. Journal of Nuclear Medicine, 52, 1898-1902.
[20] Graf, N., Herrmann, K., den Hollander, J., Fend, F., Schuster, T., Wester, H.J., Senekowitsch-Schmidtke, R., zum Büschenfelde, C.M., Peschel, C., Schwaiger, M., Dechow, T. and Buck, A.K. (2008) Imaging Proliferation to Monitor Early Response of Lymphoma to Cytotoxic Treatment. Molecular Imaging and Biology, 10, 349-355.
[21] Li, Z., Graf, N., Herrmann, K., Jünger, A., Aichler, M., Feuchtinger, A., Baumgart, A., Walch, A., Peschel, C., Schwaiger, M., Buck, A., Keller, U. and Dechow, T. (2012) FLT-PET Is Superior to FDG-PET for Very Early Response Prediction in NPM-ALK-Positive Lymphoma Treated with Targeted Therapy. Cancer Research, 72, 5014-5024.
[22] Graf, N., Herrmann, K., Numberger, B., Zwisler, D., Aichler, M., Feuchtinger, A., Schuster, T., Wester, H.J., Senekowitsch-Schmidtke, R., Peschel, C., Schwaiger, M., Keller, U., Dechow, T. and Buck, A.K. (2013) [18F]FLT Is Superior to [18F]FDG for Predicting Early Response to Antiproliferative Treatment in High-Grade Lymphoma in a Dose-Dependent Manner. European Journal of Nuclear Medicine and Molecular Imaging, 40, 34-43.
[23] Machulla, H.J., Blocher, A., Kuntzsch, M., Piert, M., Wei, R. and Grierson, J. (2000) Simplified Labeling Approach for Synthesizing 3-Deoxy-3[18F]Fluorothymidine ([18F]FLT). Journal of Radioanalytical and Nuclear Chemistry, 243, 843-846.
[24] Velders, M.P., van Rhijn, C.M., Oskam, E., Fleuren, G.J., Warnaar, S.O. and Litvinov, S.V. (1998) The Impact of Antigen Density and Antibody Affinity on Antibody-Dependent Cellular Cytotoxicity: Relevance for Immunotherapy of Carcinomas. British Journal of Cancer, 78, 478-483.
[25] Cheson, B.D. and Leonard, J.P. (2008) Monoclonal Antibody Therapy for B-Cell Non-Hodgkin’s Lymphoma. The New England Journal of Medicine, 359, 613-626.
[26] Knowles, S.M. and Wu, A.M. (2012) Advances in Immuno-Positron Emission Tomography: Antibodies for Molecular Imaging in Oncology. Journal of Clinical Oncology, 30, 3884-3892.
[27] Akins, E.J. and Dubey, P. (2008) Noninvasive Imaging of Cell-Mediated Therapy for Treatment of Cancer. Journal of Nuclear Medicine, 49, 180S-195S.
[28] Aarntzen, E.H., Srinivas, M., De Wilt, J.H., Jacobs, J.F., Lesterhuis, W.J., Windhorst, A.D., Troost, E.G., Bonenkamp, J.J., van Rossum, M.M., Blokx, W.A., Mus, R.D., Boerman, O.C., Punt, C.J., Figdor, C.G., Oyen, W.J. and de Vries, I.J. (2011) Early Identification of Antigen-Specific Immune Responses in Vivo by [18F]-Labeled 3’-Fluoro-3’-Deoxy-Thymidine ([18F]FLT) PET Imaging. Proceedings of the National Academy of Sciences of the United States of America, 108, 18396-18399.
[29] Nair-Gill, E., Wiltzius, S.M., Wei, X.X., Cheng, D., Riedinger, M., Radu, C.G. and Witte, O.N. (2010) PET Probes for Distinct Metabolic Pathways Have Different Cell Specificities during Immune Responses in Mice. Journal of Clinical Investigation, 120, 2005-2015.
[30] Greiner, D.L., Hesselton, R.A. and Shultz, L.D. (1998) SCID Mouse Models of Human Stem Cell Engraftment. Stem Cells, 16, 166-177.
[31] Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674.
[32] Tehrani, O.S. and Shields, A.F. (2013) PET Imaging of Proliferation with Pyrimidines. Journal of Nuclear Medicine, 54, 903-912.
[33] Shah, C., Miller, T.W., Wyatt, S.K., McKinley, E.T., Olivares, M.G., Sanchez, V., Nolting, D.D., Buck, J.R., Zhao, P., Ansari, M.S., Baldwin, R.M., Gore, J.C., Schiff, R., Arteaga, C.L. and Manning, H.C. (2009) Imaging Biomarkers Predict Response to Anti-HER2 (ErbB2) Therapy in Preclinical Models of Breast Cancer. Clinical Cancer Research, 15, 4712-4721.
[34] Whisenant, J.G., McIntyre, J.O., Peterson, T.E., Kang, H., Sánchez, V., Manning, H.C., Arteaga, C.L. and Yankeelov, T.E. (2015) Utility of [18F]FLT-PET to Assess Treatment Response in Trastuzumab-Resistant and Trastuzumab-Sensitive HER2-Overexpressing Human Breast Cancer Xenografts. Molecular Imaging and Biology, 17, 119-128.
[35] Takeuchi, S., Zhao, S., Kuge, Y., Zhao, Y., Nishijima, K., Hatano, T., Shimizu, Y., Kinoshita, I., Tamaki, N. and Dosaka-Akita, H. (2011) 18F-Fluorothymidine PET/CT as an Early Predictor of Tumor Response to Treatment with Cetuximab in Human Lung Cancer Xenografts. Oncology Reports, 26, 725-730.
[36] Atkinson, D.M., Clarke, M.J., Mladek, A.C., Carlson, B.L., Trump, D.P., Jacobson, M.S., Kemp, B.J., Lowe, V.J. and Sarkaria, J.N. (2008) Using Fluorodeoxythymidine to Monitor Anti-EGFR Inhibitor Therapy in Squamous Cell Carcinoma Xenografts. Head & Neck, 30, 790-799.
[37] Manning, H.C., Merchant, N.B., Foutch, A.C., Virostko, J.M., Wyatt, S.K., Shah, C., McKinley, E.T., Xie, J., Mutic, N.J., Washington, M.K., LaFleur, B., Tantawy, M.N., Peterson, T.E., Ansari, M.S., Baldwin, R.M., Rothenberg, M.L., Bornhop, D.J., Gore, J.C. and Coffey, R.J. (2008) Molecular Imaging of Therapeutic Response to Epidermal Growth Factor Receptor Blockade in Colorectal Cancer. Clinical Cancer Research, 14, 7413-7422.
[38] Herrmann, K., Buck, A.K., Schuster, T., Abbrederis, K., Blümel, C., Santi, I., Rudelius, M., Wester, H.J., Peschel, C., Schwaiger, M., Dechow, T. and Keller, U. (2014) Week One FLT-PET Response Predicts Complete Remission to R-CHOP and Survival in DLBCL. Oncotarget, 5, 4050-4059.
[39] Manufacture’s Instruction, Acris Antibodies.
[40] Ma, D.Y. and Clark, E.A. (2009) The Role of CD40 and CD154/CD40L in Dendritic Cells. Seminars in Immunology, 21, 265-272.
[41] van Kooten, C. and Banchereau, J. (2000) CD40-CD40 Ligand. Journal of Leukocyte Biology, 67, 2-17.
[42] Advani, R., Forero-Torres, A., Furman, R.R., Rosenblatt, J.D., Younes, A., Ren, H., Harrop, K., Whiting, N. and Drachman, J.G. (2009) Phase I Study of the Humanized Anti-CD40 Monoclonal Antibody Dacetuzumab in Refractory or Recurrent Non-Hodgkin’s Lymphoma. Journal of Clinical Oncology, 27, 4371-4377.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.