Share This Article:

Decomposition and Mineralization Effect of Various Sources of Pig Manure on Water Quality and Nutrients Availability for Agro-Fish System in Benin

Abstract Full-Text HTML XML Download Download as PDF (Size:2648KB) PP. 1194-1206
DOI: 10.4236/as.2014.512129    3,336 Downloads   3,805 Views   Citations

ABSTRACT

In spite of the relevance of current studies on the importance of organic fertilizers such as animal manure in improving the health of ecosystems, little is known about the biochemical mechanisms affecting the availability of nutrients released from the organic fertilizer in water. A litter bag study during 6 weeks was carried out in pots containing 25 liters of water with 15 g of pig dejections as organic fertilizers. The experimental design was a completely randomized block design with three replications. The treatments consisted of dejections of pigs nourished with: recommended diet composition T1, partially improved diet with Azolla filiculoides T2, improved diet with Azolla filiculoides T3, improved diet with cereal bran T4. A control treatment without dejection (T0) was considered in the study for comparison purpose. Four pigs per type of diet were considered leading to 16 white landrace pigs of six months age followed for dejection collections. Strong release of nutrients for better yield for agro-fish system was obtained in the manure T1 with   (10.85 ± 0.00) mg/L;  ( 0.011 ± 0.00) mg/L;  (2.13 ± 0.07) mg/L and K+ (10.76 ± 0.57) mg/L; Ca2+ (2.92 ± 0.11) mg/L and Mg2+ (2.53 ± 0.00) mg/L followed by manure T3 and T4 with high N content. The relatively low ratio C/N (14.25) for T1 and (15.84) for T3 induced more nutrients releasing. This study showed an important N loss probably due to microorganism activities which fluctuate nutrient availability. Also significant correlations were noted between the nutrient dynamics in water and physicochemical parameters showing the effect of abiotic factors on organic matter decomposition and mineralization which depend on microbial activities in water and pig manure composition.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Bokossa, H. , Saïdou, A. , Sossoukpe, E. , Fiogbé, D. and Kossou, D. (2014) Decomposition and Mineralization Effect of Various Sources of Pig Manure on Water Quality and Nutrients Availability for Agro-Fish System in Benin. Agricultural Sciences, 5, 1194-1206. doi: 10.4236/as.2014.512129.

References

[1] FAO (Food and Agriculture Organization) (2006) Utilisation des engrais par culture au Maroc. Première édition (Rome), 73 p.
[2] Pilar, F., Castellar, I. and Navarro, J. (2005) Nitrate Leaching in Pepper Cultivation with Organic Manure and Supplementary Additions of Mineral Fertilizer. Communications in Soil Science and Plant Analysis, 36, 2889-2899.
http://dx.doi.org/10.1080/00103620500306072
[3] Amadji, L.G., Saidou, A. and Chitou, L. (2009) Recycling of Organic Residues in Compost to Improve Coastal Sandy Soil Properties and Cabbage shoot In Benin. International Journal of Biological and Chemical Sciences, 3, 192-202.
[4] Cordovil, C.M.S., Cabral, F. and Coutinho, J. (2007) Potential Mineralization of Nitrogen from Organic Wastes to Ryegrass and Wheat Crops. Bioresource Technology, 98, 3265-3268.
http://dx.doi.org/10.1016/j.biortech.2006.07.014
[5] Evers, G.W. (2002) Ryegrass-Bermudagrass Production and Nutrient Uptake When Combining Nitrogen Fertilizer with Broiler Litter. Agronomy Journal, 94, 905-910.
http://dx.doi.org/10.2134/agronj2002.9050
[6] Vagstad, N., Broch-Due, A. and Lyngstad, I. (2001) Direct and Residual Effects of Pulp and Paper Mill Sludge on Crop Yield and Soil Mineral N. Soil Use and Management, 17, 173-178.
http://dx.doi.org/10.1079/SUM200172
[7] Vasconcelos, E., Cabral, F. and Cordovil, C.M.S. (1999) Wheat Yield and Leachability of Phosphorus and Nitrogen in Pig Slurry Amended Soils. Communications in Soil Science and Plant Analysis, 30, 2245-2257.
http://dx.doi.org/10.1080/00103629909370369
[8] Lu, J.B. and Li, X. (2006) Review of Rice-Fish-Farming Systems in China—One of the Globally Important Ingenious Agricultural Heritage Systems (GIAHS). Aquaculture, 260, 106-113.
http://dx.doi.org/10.1016/j.aquaculture.2006.05.059
[9] Haroon, A.K.Y. and Pittman, K.A. (1997) Rice-Fish Culture: Feeding, Growth and Yield of Two Size Classes of Puntius gonionotus Bleeker and Oreochromis spp. in Bangladesh. Aquaculture, 154, 26l-281.
[10] Youssouf, A., Saidou, A., Mama, D., Fiogbé, E.D. and Micha, J.-C. (2012) Evaluation of Nitrogen and Phosphorus Wastes Produced by Nile Tilapia (Oreochromis niloticus L.) Fed Azolla-Diets in Earthen Ponds. Journals of Environmental Protection, 3, 502-507.
[11] Accodji, J.M.M., Fiogbé, E.D. and Gangbazo, K.H. (2009) Essai de valorisation d’Azolla (Azolla microphylla Kaulf) dans la production porcine en zone humide. International Journal of Biological and Chemical Sciences, 3, 890-898.
[12] Fiogbé, E.D. and Gangbazo, K.H. (2005) Production porcine avec Azolla. Actes des 2èmes Journées Scientifiques Internationales des Universités Nationales du Bénin, 13-16 avril 2004, 142-154.
[13] Agadjihouèdé, H., Montchowi, E., Chikou, A. and Lalèyè, P.A. (2011) Libération comparée de sels dans l’eau par la minéralisation de l’azolla, la bouse de vache, la fiente de volaille et les sons de riz et de maïs utilisés en pisciculture. International Journal of Biological and Chemical Sciences, 5, 1883-1897.
[14] Djissou, A.S. (2012) Production d’aliments vivants (zooplancton) à partir des déjections de porcs pour nourrir les larves de poissons: Détermination des doses optimales. Mémoire de Master en Hydrobiologie Appliquée. Option: Aquaculture, Université d’Abomey-Calavi, Cotonou, 44 p.
[15] Qiu, S., Mc Comb, A.J. and Bell, R.W. (2013) Leaf Litter Decomposition and Nutrient Dynamics in Woodland and Wetland Conditions along a Forest to Wetland Hillslope. International Scholarly Research Network. ISRN Soil Science, 2012, Article ID: 346850.
[16] Hartemink, A.E. and O’Sullivan, J.N. (2001) Leaf Litter Decomposition of Piper aduncum, Gliricidia sepium, and Imperata cylindrica in the Humid Lowland of Papua New Guinea. Plant and Soil, 230, 115-124.
http://dx.doi.org/10.1023/A:1004868502539
[17] Tian, G., Kang, B.T. and Brussaard, L. (1992) Biological Effects of Plant Residues with Contrasting Chemical Compositions under Humid Tropical Conditions-Decomposition and Nutrient Release. Soil Biology and Biochemistry, 24, 1051-1060.
http://dx.doi.org/10.1016/0038-0717(92)90035-V
[18] Kanninkpo, C. (2013) Synthèse de quelques méthodes d’analyses utilisées par le Laboratoire des Sciences du Sol, Eaux et Environnement (LSSEE/CRA Agonkanmey/INRAB) pour les produits végétaux; Rédigé sur la base des documents de travail; 2 p.
[19] Rodier, J. (1996) L’Analyse de l’eau. eaux naturelles, eaux résiduelles, eau de mer. 8ème Edition, DUNOD, Paris, 1383 p.
[20] Dourmand, J.Y. and Henry, Y. (1994) Influence de l’alimentation et des performances sur les rejets azotés du porc. Institut National de la Recherche Agronomique (INRA), Production animale (ProdAnim), 7, 263-274.
[21] Corpen (1996) Estimation des rejets d’azote et de phosphore des élevages de porcs. 23 p.
[22] Faure, P. (2011) Digestion et Absorption des glucides. UE de biochimie métabolique. Université Joseph Fourrier Grenolde 1, Etude de Santé, 1ième année, 31 p.
[23] Crevieu, G. (1999) Digestion des protéines végétales chez les monogastriques. Exemple des protéines de pois. Institut National de la Recherche Agronomique (INRA), Production animale (ProdAnim), 12, 147-161.
[24] Bernard, C., Côté, C., Côté, D., Girou, M., Grégoire, R., Joncas, R. and Martin, D.Y. (2003) Commission sur le développement durable de la production porcine au Québec. Mémoire de l’Institut de recherche et de développement en agroenvironnement (Irda) Inc., Sainte-Marie, 41 p.
[25] Belghiti, M.L., Chahlaoui, A., Bengoumi, D. and EL Moustaine, R. (2013) Etude de la qualité physico -chimique et bactériologique des eaux souterraines de lanappe plio-quaternaire dans la région de meknès (maroc). Larhyss Journal, 14, 21-36.
[26] Brault, J.L. (1989) Mémento Technique de l’eau. Ed. Technique et Documentation, Paris, 3-119.
[27] Chikou, A. (2011) Pisciculture: Notes de cours à l’intention des étudiants du Master 1 en Hydrobiologie et Aquaculture. Université d’Abomey-Calavi, Cotonou, 86 p.
[28] Cornaz (2004) Evaluation du statut trophique d’un canal de drainage sous l’impact des pollutions d’origines diffuses et ponctuelles: Le cas du Grand Canal de la plaine du Rhône. 180 p.
[29] Gominan, O.S.A. (1999) Contribution de l’étude écologique et de la biologie des espèces de poisson du genre Clarias dans la valée de l’Ouémé: Habitat, Alimentation, Croissance et Reproduction. Thèse de Doctorat d’Ingénieur Agronome, FSA/UAC, 110 p.
[30] Abouzid, H. and Outair, A. (1991) Les Nitrates dans les eaux. 7ème Congres Mondiale des ressources en eau, Vol. 2, Rabat, 13-18 Mai 1991.
[31] Wedmeyer (1997) In Melard Ch Bases biologiques de l’aquaculture. Note de cours. DES Aquaculture, CEFRA, Université de Liège, Liège, 213 p.
[32] Chapman, D. and Kimstach, V. (1996) Selection of Water Quality Variable. W of Biota, Sediments and Water Quality Assessments: A Guide to of the Use of Biota. In: Sediments and Water in Environment Monitoring, 2nd Edition, Chapmam Edition, E& FN Spon, London, 59-126.
[33] Huber, G. and Schaub, C. (2011) Guide des fertilisations Azotés utilisables en Bio, Paris, 14 p.
[34] IBGE (2005) Qualité physico-chimique et chimique des eaux de surface: Cadre général. 4.
[35] Derwich, E., Beziane, Z., Benaabidate, L. and Belghyti, D. (2008) Evaluation de la qualité des eaux de surface des Oueds Fes et Sebou utilisées en agriculture maraichère au Maroc. Larhyss Journal, 7, 59-77.
[36] El Hafiane, F., Rami, A. and El Hamouri, B. (2003) Mécanismes d'élimination de l'azote et du phosphore dans un chenal algal à haut Rendement. Revue des sciences de l'eau/Journal of Water Science, 16, 157-172.
[37] Dovonou, F., Aina, M., Boukari, M. and Alassane, A. (2011) Pollution physico-chimique et bactériologique d’un écosystème aquatique et ses risques écotoxicologiques: Cas du lac Nokoue au Sud Benin. International Journal of Biological and Chemical Sciences, 5, 1590-1602.
[38] Voermans, J.A.M., Verdoes, N. and Hartog, L.A. (1994) Environmental Impact of Pig Farming. Pig News and Information, 15, 51-54.
[39] Moal, J.F., Martinez, J., Guiziou, F. and Coste, C.M. (1995) Ammonia Volatilization Following Surface-Applied Pig and Cattle Slurry in France. Journal of Agricultural Science, 125, 245-252.
http://dx.doi.org/10.1017/S0021859600084380
[40] Kermarrec, C. and Robin, P. (2002) Emissions de gaz azotés en élevage de porcs sur litière de sciure. Journées de la Recherche Porcine, 34, 155-160.
[41] Hassan, R., Khadija, E., Belghyti, D. and Hadji, M. (2013) Physico-Chemical Waste Water Unit of Sugar SUNABEL Mechraa Belksiri. ScienceLib Editions Mersenne, 5.
[42] Rodier (2012) Analyse de l’eau. 20225 p.
[43] Laferriere, M.(1996) L'industrie porcine et les risques reliés à la santé humaine. Vecteur Environnement, 29, 27-31.
[44] Salanitro, J.P., Blake, I.G. and Muirhead, P.A. (1977) Isolation and Identification of Fecal Bacteria from Adult Swine. Applied and Environmental Microbiology, 33, 79-84.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.