Share This Article:

DNS Analysis on the Indirect Relationship between the Local Burning Velocity and the Flame Displacement Speed of Turbulent Premixed Flames

Full-Text HTML XML Download Download as PDF (Size:2954KB) PP. 288-297
DOI: 10.4236/ojfd.2014.43022    2,921 Downloads   3,341 Views  

ABSTRACT

The local burning velocity and the flame displacement speed are the dominant properties in the mechanism of turbulent premixed combustion. The flame displacement speed and the local burning velocity have been investigated separately, because the flame displacement speed can be used for the discussion of flame-turbulence interactions and the local burning velocity can be used for the discussion of the inner structure of turbulent premixed flames. In this study, to establish the basis for the discussion on the effects of turbulence on the inner structure of turbulent premixed flames, the indirect relationship between the flame displacement speed and the local burning velocity was investigated by the flame stretch, the flame curvature, and the tangential strain rate using DNS database with different density ratios. It was found that for the local tangential strain rate and the local flame curvature, the local burning velocity and the flame displacement speed had the opposite correlations in each density ratio case. Therefore, it is considered that the local burning velocity and the flame displacement speed have a negative correlation.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Tsuboi, K. and Tomita, E. (2014) DNS Analysis on the Indirect Relationship between the Local Burning Velocity and the Flame Displacement Speed of Turbulent Premixed Flames. Open Journal of Fluid Dynamics, 4, 288-297. doi: 10.4236/ojfd.2014.43022.

References

[1] Poinsot, T., Echekki, T. and Mungal, M.G. (1992) A Study of the Laminar Flame Tip and Implications for Premixed Turbulent Combustion. Combustion Science and Technology, 81, 45-73.
http://dx.doi.org/10.1080/00102209208951793
[2] Renou, B., Boukhalfa, A., Puechberty, D. and Trinité, M. (2000) Local Scalar Flame Properties of Freely Propagating Premixed Turbulent Flames at Various Lewis Numbers. Combustion and Flame, 123, 507-521.
http://dx.doi.org/10.1016/S0010-2180(00)00180-2
[3] Kido, H., Nakahara, M., Nakashima, K. and Hashimoto, J. (2002) Influence of Local Flame Displacement Velocity on Turbulent Burning Velocity. Proceedings of the Combustion Institute, 29, 1855-1861.
http://dx.doi.org/10.1016/S1540-7489(02)80225-5
[4] Gashi, S., Hult, J., Jenkins, K.W., Chakraborty, N., Cant, S. and Kaminski, C.F. (2005) Curvature and Wrinkling of Premixed Flame Kernels—Comparisons of OH PLIF and DNS Data. Proceedings of the Combustion Institute, 30, 809-817.
http://dx.doi.org/10.1016/j.proci.2004.08.003
[5] Nakahara, M., Kido, H., Shirasuna, T. and Hirata, K. (2007) Effect of Stretch on Local Burning Velocity of Premixed Turbulent Flames. Journal of Thermal Science and Technology, 2, 268-280.
http://dx.doi.org/10.1299/jtst.2.268
[6] Nakahara, M., Shirasuna, T. and Hashimoto, J. (2009) Experimental Study on Local Flame Properties of Hydrogen Added Hydrocarbon Premixed Turbulent Flames. Journal of Thermal Science and Technology, 4, 190-201.
http://dx.doi.org/10.1299/jtst.4.190
[7] Tanahashi, M., Taka, S., Shimura, M. and Miyauchi, T. (2008) CH Double-Pulsed PLIF Measurement in Turbulent Premixed Flame. Experiments in Fluids, 45, 323-332. http://dx.doi.org/10.1007/s00348-008-0482-8
[8] Hartung, G., Hult, J., Balachandran, R., Mackley, M.R. and Kaminski, C.F. (2009) Flame Front Tracking in Turbulent Lean Premixed Flames Using Stereo PIV and Time-Sequenced Planar LIF of OH. Applied Physics B, 96, 843-862.
http://dx.doi.org/10.1007/s00340-009-3647-0
[9] Echekki, T. and Chen, J.H. (1996) Unsteady Strain Rate and Curvature Effects in Turbulent Premixed Methane-Air Flames. Combustion and Flame, 106, 184-202. http://dx.doi.org/10.1016/0010-2180(96)00011-9
[10] Peters, N., Terhoeven, P., Chen, J.H. and Echekki, T. (1998) Statistics of Flame Displacement Speeds from Computations of 2-D Unsteady Methane-Air Flames. Proceedings of the Combustion Institute, 27, 833-839.
http://dx.doi.org/10.1016/S0082-0784(98)80479-7
[11] Chen, J.H. and Im, H.G. (1998) Correlation of Flame Speed with Stretch in Turbulent Premixed Methane/Air Flames. Proceedings of the Combustion Institute, 27, 819-826.
http://dx.doi.org/10.1016/S0082-0784(98)80477-3
[12] Chen, J.H. and Im, H.G. (2000) Stretch Effects on the Burning Velocity of Turbulent Premixed Hydrogen/Air Flames. Proceedings of the Combustion Institute, 28, 211-218.
http://dx.doi.org/10.1016/S0082-0784(00)80213-1
[13] Im, H.G. and Chen, J.H. (2002) Preferential Diffusion Effects on the Burning Rate of Interacting Turbulent Premixed Hydrogen-Air Flames. Combustion and Flame, 131, 246-258.
http://dx.doi.org/10.1016/S0010-2180(02)00405-4
[14] Hawkes, E.R. and Chen, J.H. (2004) Direct Numerical Simulation of Hydrogen-Enriched Lean Premixed Methane— Air Flames. Combustion and Flame, 138, 242-258.
http://dx.doi.org/10.1016/j.combustflame.2004.04.010
[15] Chakraborty, N. and Cant, S. (2004) Unsteady Effects of Strain Rate and Curvature on Turbulent Premixed Flames in an Inflow-Outflow Configuration. Combustion and Flame, 137, 129-147.
http://dx.doi.org/10.1016/j.combustflame.2004.01.007
[16] Chakraborty, N. and Cant, R.S. (2005) Influence of Lewis Number on Curvature Effects in Turbulent Premixed Flame Propagation in the Thin Reaction Zones Regime. Physics of Fluids, 17, 105105.
http://dx.doi.org/10.1063/1.2084231
[17] Chakraborty, N. and Cant, R.S. (2006) Influence of Lewis Number on Strain Rate Effects in Turbulent Premixed Flame Propagation. International Journal of Heat and Mass Transfer, 49, 2158-2172.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.11.025
[18] Chakraborty, N. (2007) Comparison of Displacement Speed Statistics of Turbulent Premixed Flames in the Regimes Representing Combustion in Corrugated Flamelets and Thin Reaction Zones. Physics of Fluids, 19, 105109.
http://dx.doi.org/10.1063/1.2784947
[19] Chakraborty, N., Hartung, G., Katragadda, M. and Kaminski, C.F. (2011) Comparison of 2D and 3D Density-Weighted Displacement Speed Statistics and Implications for Laser Based Measurements of Flame Displacement Speed Using Direct Numerical Simulation Data. Combustion and Flame, 158, 1372-1390.
http://dx.doi.org/10.1016/j.combustflame.2010.11.014
[20] Chakraborty, N., Klein, M. and Cant, R.S. (2007) Stretch Rate Effects on Displacement Speed in Turbulent Premixed Flame Kernels in the Thin Reaction Zones Regime. Proceedings of the Combustion Institute, 31, 1385-1392.
http://dx.doi.org/10.1016/j.proci.2006.07.184
[21] Chakraborty, N., Klein, M. and Cant, R.S. (2011) Effects of Turbulent Reynolds Number on the Displacement Speed Statistics in the Thin Reaction Zones Regime of Turbulent Premixed Combustion. Journal of Combustion, 2011, Article ID: 473679. http://dx.doi.org/10.1155/2011/473679
[22] Han, I. and Huh, K.Y. (2008) Roles of Displacement Speed on Evolution of Flame Surface Density for Different Turbulent Intensities and Lewis Numbers in Turbulent Premixed Combustion. Combustion and Flame, 152, 194-205.
http://dx.doi.org/10.1016/j.combustflame.2007.10.003
[23] Haworth, D.C. and Poinsot, T.J. (1992) Numerical Simulations of Lewis Number Effects in Turbulent Premixed Flames. Journal of Fluid Mechanics, 244, 405-436.
http://dx.doi.org/10.1017/S0022112092003124
[24] Rutland, C.J. and Trouvé, A. (1993) Direct Simulations of Premixed Turbulent Flames with Nonunity Lewis Numbers. Combustion and Flame, 94, 41-57. http://dx.doi.org/10.1016/0010-2180(93)90018-X
[25] Hawkes, E.R. and Chen, J.H. (2006) Comparison of Direct Numerical Simulation of Lean Premixed Methane-Air Flames with Strained Laminar Flame Calculations. Combustion and Flame, 144, 112-125.
http://dx.doi.org/10.1016/j.combustflame.2005.07.002
[26] Bell, J.B., Cheng, R.K., Day, M.S. and Shepherd, I.G. (2007) Numerical Simulation of Lewis Number Effects on Lean Premixed Turbulent Flames. Proceedings of the Combustion Institute, 31, 1309-1317.
http://dx.doi.org/10.1016/j.proci.2006.07.216
[27] Tsuboi, K., Nishiki, S. and Hasegawa, T. (2008) An Analysis of Local Quantities of Turbulent Premixed Flames Using DNS Databases. Journal of Thermal Science and Technology, 3, 103-111.
http://dx.doi.org/10.1299/jtst.3.103
[28] Day, M., Tachibana, S., Bell, J., Lijewski, M., Beckner, V. and Cheng, R.K. (2012) A Combined Computational and Experimental Characterization of Lean Premixed Turbulent Low Swirl Laboratory Flames: I. Methane Flames. Combustion and Flame, 159, 275-290.
http://dx.doi.org/10.1016/j.combustflame.2011.06.016
[29] Nishiki, S., Hasegawa, T., Borghi, R. and Himeno, R. (2002) Analyzing and Modeling of Transport Properties of Turbulent Kinetic Energy and Turbulent Scalar Flux in Turbulent Premixed Flames by DNS. Journal of the Combustion Society of Japan, 48, 47-57.
[30] Nishiki, S., Hasegawa, T., Borghi, R. and Himeno, R. (2002) Modeling of Flame-Generated Turbulence Based on Direct Numerical Simulation Databases. Proceedings of the Combustion Institute, 29, 2017-2022.
http://dx.doi.org/10.1016/S1540-7489(02)80246-2
[31] Nishiki, S., Hasegawa, T., Borghi, R. and Himeno, R. (2006) Modelling of Turbulent Scalar Flux in Turbulent Premixed Flames Based on DNS Databases. Combustion Theory and Modelling, 10, 39-55.
http://dx.doi.org/10.1080/13647830500307477
[32] Nishiki, S. (2003) DNS and Modeling of Turbulent Premixed Combustion. Doctoral Thesis, Nagoya Institute of Technology, Nagoya.
[33] Poinsot, T.J. and Lele, S.K. (1992) Boundary Conditions for Direct Simulations of Compressible Viscous Flows. Journal of Computational Physics, 101, 104-129. http://dx.doi.org/10.1016/0021-9991(92)90046-2
[34] Baum, M., Poinsot, T. and Thévenin, D. (1995) Accurate Boundary Conditions for Multicomponent Reactive Flows. Journal of Computational Physics, 116, 247-261.
http://dx.doi.org/10.1006/jcph.1995.1024
[35] Peters, N. (1999) The Turbulent Burning Velocity for Large-Scale and Small-Scale Turbulence. Journal of Fluid Mechanics, 384, 107-132.
http://dx.doi.org/10.1017/S0022112098004212
[36] Williams, F.A. (1985) Combustion Theory. 2nd Edition, Benjamin Cummings, California.
[37] Candel, S.M. and Poinsot, T.J. (1990) Flame Stretch and the Balance Equation for the Flame Area. Combustion Science and Technology, 70, 1-15.
http://dx.doi.org/10.1080/00102209008951608

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.