Share This Article:

Cyanobacteria from Extreme Deserts to Space

Full-Text HTML XML Download Download as PDF (Size:170KB) PP. 80-86
DOI: 10.4236/aim.2013.36A010    5,032 Downloads   8,223 Views   Citations


The development of space technology makes the exposure of organisms and molecules to the space environment possible by using the ESA Biopan and Expose facilities and NASA nanosatellites; the aim is to decipher the origin, evolution and distribution of life on Earth and in the Universe. The study of microbial communities thriving in lithic habitats in cold and hot deserts is gathering appreciation when dealing with the limits of life as we know it, the identification of biosignatures for searching life beyond Earth and the validation of the (litho)-Panspermia theory. Cyanobacteria of the genus Chroococcidiopsis dominate rock-dwelling communities in extreme deserts that are considered terrestrial analogues of Mars, like the Dry Valleys in Antarctica, the Atacama Desert in Chile or the Mojave Desert in California. The extraordinary tolerance of these cyanobacteria towards desiccation, ionizing and UV radiation makes them suitable experimental strains which have been already used in astrobiological experiments and already selected for future space missions. Evidence gained so far supports the use of desert cyanobacteria to develop life support systems and insitu resource utilization for the human space exploration and settlement on the Moon or Mars.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Billi, M. Baqué, H. Smith and C. McKay, "Cyanobacteria from Extreme Deserts to Space," Advances in Microbiology, Vol. 3 No. 6A, 2013, pp. 80-86. doi: 10.4236/aim.2013.36A010.


[1] J. Lederberg, “Exobiology: Approaches to Life Beyond the Earth,” Science, Vol. 132, No. 3424, 1960, pp. 393-400.
[2] W. T. Sullivan and J. A. Baross, “Planets and Life: The Emerging Science of Astrobiology,” Cambridge University Press, Cambridge, 2007.
[3] R. Demets, W. Schulte and P. Baglioni, “The Past, Present and Future of Biopan,” Advances in Space Research, Vol. 36, No. 2, 2005, pp. 311-316.
[4] E. Rabbow, G. Horneck, P. Rettberg, J.-U. Schott, C. Panitz, A. L’Afflitto, R. von Heise-Rotenburg, R. Willnecker, P. Baglioni, J. Hatton, J. Dettmann, R. Demets and G. Reitz, “EXPOSE, an Astrobiological Exposure Facility on the International Space Station—From Proposal to Flight,” Origins of Life and Evolution of Biospheres, Vol. 39, No. 6, 2009, pp. 581-598.
[5] E. Rabbow, P. Rettberg, S. Barczyk, M. Bohmeier, A. Parpart, C. Panitz, G. Horneck, R. von Heise-Rotenburg, T. Hoppenbrouwers, R. Willnecker, P. Baglioni, R. Demets, J. Dettmann and G. Reitz, “EXPOSE-E: An ESA Astrobiology Mission 1.5 Years in Space,” Astrobiology, Vol. 12, No. 5, 2012, pp. 374-386.
[6] W. A. Shiroma, L. K. Martin, J. M. Akagi, J. T. Akagi, B. L. Wolfe, B.A. Fewell and A. T. Ohta, “CubeSats: A Bright Future for Nanosatellites,” Central European Journal of Engineering, Vol. 1, No. 1, 2011, pp. 9-15.
[7] K. Woellert, P. Ehrenfreund, A. J. Ricco and H. Hertzfeld, “Cubesats: Cost-Effective Science and Technology Platforms for Emerging and Developing Nations,” Advances in Space Research, Vol. 47, No. 4, 2011, pp. 663-684.
[8] L. G. Sancho, R. de la Torre, G. Horneck, C. Ascaso, A. de los Rios, A. Pintado, J. Wierzchos and M. Schuster, “Lichens Survive in Space: Results from 2005 LICHENS Experiment,” Astrobiology, Vol. 7, No. 3, 2007, pp. 443-454.
[9] K. I. Jonsson, E. Rabbow, R. O. Schill, M. Harms-Ringdahl and P. Rettberg, “Tardigrades Survive Exposure to Space in Low Earth Orbit,” Current Biology, Vol. 18, 2008, pp. R729-R731.
[10] S. Onofri, R. de la Torre, J.-P. de Vera, S. Ott, L. Zucconi, L. Selbmann, G. Scalzi, K. J. Venkateswaran, E. Rabbow, F. J. Sánchez Inigo and G. Horneck, “Survival of Rock-Colonizing Organisms after 1.5 Years in Outer Space,” Astrobiology, Vol. 12, No. 5, 2012, pp. 508-516.
[11] G. Horneck, D. M. Klaus and R. L. Mancinelli, “Space Microbiology,” Microbiology and Molecular Biology Reviews, Vol. 74, No. 1, 2010, pp. 121-156.
[12] J. T. O’Malley-James, J. A. Raven, C. S. Cockell and J. S. Greaves, “Life and Light: Exotic Photosynthesis in Binary and Multiple-Star Systems,” Astrobiology, Vol. 12, No. 2, 2012, pp. 115-124.
[13] L. J. Rothschild and R. L. Mancinelli, “Life in Extreme Environments,” Nature, Vol. 409, No. 6823, 2001, pp. 1092-1101.
[14] A. E. Murray, F. Kenig, C. H. Fritsen, C. P. McKay, K. M. Cawley, R. Edwards, E. Kuhn, D. M. McKnight, N. E. Ostrom, V. Peng, A. Ponce, J. C. Priscu, V. Samarkin, A. T. Townsend, P. Wagh, S. A. Young, P. T. Yung and P. T. Doran, “Microbial Life at -13℃ in the Brine of an Ice-Sealed Antarctic Lake,” Proceedings of the National Academy of Sciences, Vol. 109, No. 50, 2012, pp. 20626-20631.
[15] A. G. Fairén, A. F. Davila, D. Lim, N. Bramall, R. Bonaccorsi, J. Zavaleta, E. R. Uceda, C. Stoker, J. Wierzchos, J. M. Dohm, R. Amils, D. Andersen and C. P. Mc-Kay, “Astrobiology Through the Ages of Mars: The study of Terrestrial Analogues to Understand the Habitability of Mars,” Astrobiology, Vol. 10, No. 8, 2010, pp. 821-843.
[16] S. Golubic, E. I. Friedmann and J. Schneider, “The Lithobiontic Ecological Niche, with Special Reference to Microorganisms,” Journal of Sedimentary Research, Vol. 51, No. 2, 1981, pp. 475-478.
[17] C. P. McKay, “Full Solar Spectrum Measurements of Absorption of Light in a Sample of the Beacon Sandstone Containing the Antarctic Cryptoendolithic Microbial Community,” Antarctic Science, Vol. 24, No. 3, 2012, pp. 243-248.
[18] R. D. Jolitz and C. P. McKay, “Quantitative 3D Model of Light Transmittance through Translucent Rocks Applied to the Hypolithic Microbial Community,” Microbial Ecology, Vol. 66, No. 1, 2013, pp. 112-119.
[19] K. A. Warren-Rhodes, K. L. Rhodes, S. B. Pointing, S. A. Ewing, D. C. Lacap, B. Gómez-Silva, R. Amundson, E. I. Friedmann and C. P. McKay, “Hypolithic Cyanobacteria, Dry Limit of Photosynthesis and Microbial Ecology in the Hyperarid Atacama Desert,” Microbial Ecology, Vol. 52, No. 3, 2006, pp. 389-398.
[20] F. Gómez and V. Parro, “Applications of Extremophiles in Astrobiology: Habitability and Life Detection Strategies,” In: H. Stan-Lotter and F. Fendrihan, Eds., Adaptation of Microbial Life to Environmental extremes: Novel Research Results and Application, Springer, Vienna, 2012, pp. 199-229.
[21] S. Jorge-Villar and H. G. M. Edwards, “Microorganism Response to Stressed Terrestrial Environments: A Raman Spectroscopic Perspective of Extremophilic Life Strategies,” Life, Vol. 3, No. 1, 2013, pp. 276-294.
[22] T. Varnali and H. G. M. Edwards, “A Potential New Biosignature of Life in Iron-Rich Extreme Environments: An Iron (III) Complex of Scytonemin and Proposal for its Identification Using Raman Spectroscopy,” Planetary and Space Science, Vol. 82-83, 2013, pp. 128-133.
[23] P. Vítek, H. G. M. Edwards, J. Jehlicka, C. Ascaso, A. D. L. Ríos, S. Valea, S. E. Jorge-Villar, A. F. Davila and J. Wierzchos, “Microbial Colonization of Halite from the Hyper-Arid Atacama Desert Studied by Raman Spectroscopy,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 368, No. 1922, 2010, pp. 3205-3221.
[24] J. Wierzchos, C. Ascaso and C. P. McKay, “Endolithic Cyanobacteria in Halite Rocks from the Hyperarid Core of the Atacama Desert,” Astrobiology, Vol. 6, No. 3, 2006, pp. 415-422.
[25] N. Stivaletta, R. Barbieri and D. Billi, “Microbial Colonization of the Salt Deposits in the Driest Place of the Atacama Desert (Chile),” Origins of Life and Evolution of Biospheres, Vol. 42, No. 2, 2012, pp. 187-200.
[26] J. L. Bishop, R. T. Schelble, C. P. McKay, A. J. Brown and K. A. Perry, “Carbonate Rocks in the Mojave Desert as an Analogue for Martian Carbonates,” International Journal of Astrobiology, Vol. 10, No. 04, 2011, pp. 349-358.
[27] K. I. Jonsson, “Tardigrades as a Potential Model Organism in Space Research,” Astrobiology, Vol. 7, No. 5, 2007, pp. 757-766.
[28] D. Billi, E.I. Friedmann, K.G. Hofer, M. Grilli Caiola and R. Ocampo-Friedmann, “Ionizing-Radiation Resistance in the Desiccation-Tolerant Cyanobacterium Chroococcidiopsis,” Applied Environmental Microbioliology, Vol. 66, No. 4, 2000, pp. 1489-1492.
[29] E. I. Friedmann, L. Kappen, M. A. Meyer and J. A. Nienow, “Long-Term Productivity in the Cryptoendolithic Communities of the Ross Desert, Antarctica,” Microbial Ecology, Vol. 25, 1997, pp. 51-69.
[30] D. Billi, “Subcellular Integrities in Chroococcidiopsis sp. CCMEE 029 Survivors After Prolonged Desiccation Revealed by Molecular Probes and Genome Stability Assays,” Extremophiles, Vol. 13, No. 1, 2009, pp. 49-57.
[31] D. Billi, “Anhydrobiotic Rock-Inhabiting Cyanobacteria: Potential for Astrobiology and Biotechnology,” In: H. Stan-Lotter and F. Fendrihan, Eds., Adaptation of Microbial Life to Environmental extremes: Novel Research Results and Application, Springer Wien, New York, 2012, pp. 119-132.
[32] M. Grilli Caiola and D. Billi, “Chroococcidiopsis from Desert to Mars,” In: D. J. Seckbach, Ed., Algae and Cyanobacteria in Extreme Environments, Springer, Netherlands, 2007, pp. 553-568.
[33] D. Billi, E. Viaggiu, C. S. Cockell, E. Rabbow, G. Horneck and S. Onofri, “Damage Escape and Repair in Dried Chroococcidiopsis spp. from Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions,” Astrobiology, Vol. 1, No. 0, 2011, pp. 65-73.
[34] A. Bauermeister, R. Moeller, G. Reitz, S. Sommer and P. Rettberg, “Effect of Relative Humidity on Deinococcus radiodurans’ Resistance to Prolonged Desiccation, Heat, Ionizing, Germicidal and Environmentally Relevant UV Radiation,” Microbial Ecology, Vol. 61, No. 3, 2010, pp. 715-722.
[35] G. Horneck and P. Rettberg, “Complete Course in Astrobiology,” Wiley-VCH, 2007.
[36] M. Baqué, E. Viaggiu, G. Scalzi and D. Billi, “Endurance of the Endolithic Desert Cyanobacterium Chroococcidiopsis under UVC Radiation,” Extremophiles, Vol. 17, No. 1, 2013, pp. 161-169.
[37] C. S. Cockell, A. C. Schuerger, D. Billi, E. I. Friedmann and C. Panitz, “Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029,” Astrobiology, Vol. 5, No. 2, 2005, pp. 127-140.
[38] E. I. Friedmann and R. Ocampo-Friedmann, “A Primitive Cyanobacterium as Pioneer Microorganism for Terraforming Mars,” Advances in Space Research, Vol. 15, No. 3, 1995, pp. 243-246.
[39] M. Baqué, J.-P. de Vera, P. Rettberg and D. Billi, “The BOSS and BIOMEX Space Experiments on the EX-POSE-R2 Mission: Endurance of the Desert Cyanobacterium Chroococcidiopsis Under Simulated Space Vacuum, Martian Atmosphere, UVC Radiation and Temperature Extremes,” Acta Astronautica, Vol. 91, 2013, pp. 180-186.
[40] M. Baqué, G. Scalzi, E. Rabbow, P. Rettberg and D. Billi, “Biofilm and Planktonic Lifestyles Differently Support the Resistance of the Desert Cyanobacterium Chroococcidiopsis Under Space and Martian Simulations,” Origins of Life and Evolution of Biospheres, 2013.
[41] K. Olsson-Francis, R. de la Torre and C. S. Cockell, “Isolation of Novel Extreme-Tolerant Cyanobacteria from a Rock-Dwelling Microbial Community by Using Exposure to Low Earth Orbit,” Applied and Environmental Microbiology, Vol. 76, No. 7, 2010, pp. 2115-2121.
[42] K. Olsson-Francis, R. de la Torre, M. C. Towner and C. S. Cockell, “Survival of Akinetes (Resting-State Cells of Cyanobacteria) in Low Earth Orbit and Simulated Extraterrestrial Conditions,” Origins of Life and Evolution of Biospheres, Vol. 39, No. 6, 2009, pp. 565-579.
[43] C. S. Cockell, A. Brack, D. D. Wynn-Williams, P. Baglioni, F. Brandstatter, R. Demets, H. G. M. Edwards, A. L. Gronstal, G. Kurat, P. Lee, G. R. Osinski, D. A. Pearce, J. M. Pillinger, C.-A. Roten and S. Sancisi-Frey, “Interplanetary Transfer of Photosynthesis: An Experimental Demonstration of a Selective Dispersal Filter in Planetary Island Biogeography,” Astrobiology, Vol. 7, No. 1, 2007, pp. 1-9.
[44] W. L. Nicholson, “Ancient Micronauts: Interplanetary Transport of Microbes by Cosmic Impacts,” Trends in Microbiology, Vol. 17, No. 6, 2009, pp. 243-250.
[45] C. S. Cockell, P. Rettberg, E. Rabbow and K. Olsson-Francis, “Exposure of Phototrophs to 548 days in Low Earth Orbit: Microbial Selection Pressures in Outer Space and on Early Earth,” ISME Journal, Vol. 5, No. 10, 2011, pp. 1671-1682.
[46] J.-P. de Vera, U. Boettger, R. de la Torre Noetzel, F. J. Sánchez, D. Grunow, N. Schmitz, C. Lange, H.-W. Hubers, D. Billi, M. Baqué, P. Rettberg, E. Rabbow, G. Reitz, T. Berger, R. Moller, M. Bohmeier, G. Horneck, F. Westall, J. Janchen, J. Fritz, C. Meyer, S. Onofri, L. Selbmann, L. Zucconi, N. Kozyrovska, T. Leya, B. Foing, R. Demets, C. S. Cockell, C. Bryce, D. Wagner, P. Serrano, H. G. M. Edwards, J. Joshi, B. Huwe, P. Ehrenfreund, A. Elsaesser, S. Ott, J. Meessen, N. Feyh, U. Szewzyk, R. Jaumann and T. Spohn, “Supporting Mars Exploration: BIOMEX in Low Earth Orbit and Further Astrobiological Studies on the Moon Using Raman and PanCam Tchnology,” Planetary and Space Science, Vol. 74, No. 1, 2012, pp. 103-110.
[47] L. Hendrickx and M. Mergeay, “From the Deep Sea to the Stars: Human Life Support through Minimal Cmmunities,” Current Opinion in Microbiology, Vol. 10, No. 3, 2007, pp. 231-237.
[48] L. Hendrickx, H. De Wever, V. Hermans, F. Mastroleo, N. Morin, A. Wilmotte, P. Janssen and M. Mergeay, “Microbial Ecology of the Closed Artificial Ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): Reinventing and Compartmentalizing the Earth’s Food and Oxygen Regeneration System for Long-Haul Space Exploration Missions,” Research in Microbiology, Vol. 157, No. 1, 2006, pp. 77-86.
[49] A. Le Postollec, S. Incerti, M. Dobrijevic, L. Desorgher, G. Santin, P. Moretto, O. Vandenabeele-Trambouze, G. Coussot, L. Dartnell and P. Nieminen, “Monte Carlo Simulation of the Radiation Environment Encountered by a Biochip During a Space Mission to Mars,” Astrobiology, Vol. 9, No. 3, 2009, pp. 311-323.
[50] S. McKenna-Lawlor, P. Goncalves, A. Keating, G. Reitz and D. Matthia, “Overview of Energetic Particle hazards During Prospective Manned Missions to Mars,” Planetary and Space Science, Vol. 63-64, No. 0, 2012, pp. 123-132.
[51] M. Montague, G. H. McArthur 4th, C. S. Cockell, J. Held, W. Marshall, L. A. Sherman, N. Wang, W. L. Nicholson, D. R. Tarjan and John Cumbers, “The Role of Synthetic Biology for In Situ Resource Utilization (ISRU),” Astrobiology, Vol. 12, 2012, pp. 1135-1142.
[52] K. Olsson-Francis and C. S. Cockell, “Use of Cyanobacteria for In-Situ Resource Use in Space Applications,” Planetary and Space Science, Vol. 58, No. 10, 2010, pp. 1279-1285.
[53] D. Billi, E. I. Friedmann, R. F. Helm and M. Potts, “Gene Transfer to the Desiccation-Tolerant Cyanobacterium Chroococcidiopsis,” Journal of Bacteriology, Vol. 183, No. 7, 2001, pp. 2298-2305.
[54] D. Billi D, “Genetic Tools for Desiccation, Radiation-Tolerant Cyanobacteria of the Genus Chroococcidiopsis,” In: A. Méndez-Vilas, Ed., Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Format Research Center, 2010, pp. 1517-1521.
[55] B. Shirkey, N. J. McMaster, S. C. Smith, D. J. Wright, H. Rodriguez, P. Jaruga, M. Birincioglu, R. F. Helm and M. Potts, “Genomic DNA of Nostoc commune (Cyanobacteria) Becomes Covalently Modified During Long-Term (Decades) Desiccation But is Protected From Oxidative Damage and Degradation,” Nucleic Acids Research, Vol. 31, No. 12, 2003, pp. 2995-3005.
[56] D. Billi, “Plasmid Stability in Dried Cells of the Desert Cyanobacterium Chroococcidiopsis and its Potential for GFP Imaging of Survivors on Earth and in Space,” Origins of Life and Evolution of Biospheres, Vol. 42, No. 2, 2012, pp. 235-245.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.