Ce-SAD Phasing of Glucose Isomerase and Thermolysin Using Cu Radiation

DOI: 10.4236/csta.2013.23013   PDF   HTML     2,683 Downloads   4,905 Views  


Current structural genomics projects aim to solve a large number of selected protein structures as fast as possible. High degree of automation and standardization is required at every step of the whole process to speed up protein structure determination. Phase problem is a bottleneck in macromolecular structure determination and also in model building which is a time-consuming task. The simplest approach to phasing macromolecular crystal structures is the use of a SAD signal. SAD data can be collected using the in-house copper (1.54 A) wavelength source. Data collected using copper wavelength with the incorporation of anomalously scattering heavy metal atoms may serve as a powerful tool for structural biologists to solve novel protein structures as well where synchrotron beam line is not available. A short soak of protein crystals in heavy metal solution or by incorporating heavy atoms into the protein drop while crystallizing the protein (co-crystallization) leads to incorporation of these heavy metal ions into the ordered solvent shell around the protein surface. The present work aims to determine whether cerium ion can be successfully incorporated into the protein crystal through quick-soaking method while maintaining the isomorphism. The study also aims in understanding whether this metal ion can be used for phasing purpose. The intensity data are collected and analyzed for anomalous signal, substructure solution and the binding sites.

Share and Cite:

S. Narayanan and D. Velmurugan, "Ce-SAD Phasing of Glucose Isomerase and Thermolysin Using Cu Radiation," Crystal Structure Theory and Applications, Vol. 2 No. 3, 2013, pp. 93-99. doi: 10.4236/csta.2013.23013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Lee and H. M. Berman et al., “The Protein Data Bank and the Challenge of Structural Genomics,” Nature Structure Biology, Vol. 7, No. 1, 2000, pp. 957-959. doi:10.1038%2F80734
[2] W. A. Hendrickson and C. M. Ogata, “Phase Determination from Multiwavelength Anomalous Diffraction Measurements,” Methods in Enzymology, Macromolecular Crystallography, Part A, Vol. 276, 1997, pp. 494-523. doi:10.1016/S0076-6879(97)76074-9
[3] D. Blow, “Outline of Crystallography for Biologists,” Oxford University Press, Oxford, 2002
[4] W. Yang, W. A. Hendrickson, R. J. Crouch and Y. Satow, “Structure of Ribonuclease H Phased at 2 A Resolution by MAD Analysis of the Selenomethionyl Protein,” Science, Vol. 249, No. 4975, 1990, pp. 1398-1405. doi:10.1126/science.2169648
[5] J. E. Debreczeni, G. Bunkóczi, B. Girmann and G. M. Sheldrick, “In-House Phase Determination of the Lima Bean Trypsin Inhibitor: A Low-Resolution Sulfur-SAD Case,” Acta Crystallographica, Vol. D59, No. 2, 2003, pp. 393-395. doi:10.1107/S0907444902020917
[6] Z. Dauter, “Estimation of Anomalous Signal in Diffraction Data,” Acta Crystallographica, Vol. D62, No. 8, 2006, 867-876. doi:10.1107%2FS0907444906023481
[7] W. A. Hendrickson, “Determination of Macromolecular Structures from Anomalous Diffraction of Synchrotron Radiation,” Science, Vol. 254, No. 5028, 1991, pp. 51-58. doi:10.1107%2FS0907444906023481
[8] J. L. Smith, “Determination of Three-Dimensional Structure by Multiwavelength Anomalous Diffraction,” Current Opinion in Structure Biology, Vol. 1, No. 6, 1991, pp. 1002-1011. doi:10.1016%2F0959-440X%2891%2990098-E
[9] M. Yogavel, J. Gill and A. Sharma, “Iodide-SAD, SIR and SIRAS Phasing for Structure Solution of a Nucleosome Assembly Protein,” Acta Crystallographica, Vol. D65, No. 6, 2009, pp. 618-622. doi:10.1107%2FS0907444909013171
[10] D. K. Carugo, J. R. Helliwell, H. Stuhrmann and M. S. Weiss, “Softer and Soft X-Rays in Macromolecular Crystallography,” Journal of Synchrotron Radiation, Vol. 12, No. 4, 2005, pp. 410-419. doi:10.1107/S0909049504025762
[11] L. M. Rice, T. N. Earnest and A. T. Brunger, “Single-Wavelength Anomalous Diffraction Phasing Revisited,” Acta Crystallographica, Vol. D56, No. 11, 2000, pp. 1413-1420. doi:10.1107%2FS0907444900010039
[12] M. Yogavel, J. Gill, P. C. Mishra and A. Sharma, “SAD Phasing of a Structure Based on Cocrystallized Iodides Using an in-House Cu Kalpha X-Ray Source: Effects of Data Redundancy and Completeness on Structure Solution,” Acta Crystallographica, D63, No. 8, 2007, pp. 931-934. doi:10.1107%2FS0907444907029174
[13] T. L. Blundell, H. Jhoti, and C. Abell, “High-Throughput Crystallography for Lead Discovery in Drug Design,” Nature Reviews Drug Discovery, Vol. 1, No. 1, 2002, pp. 45-54. doi:10.1038%2Fnrd706
[14] B.-C. Wang, “Resolution of Phase Ambiguity in Macromolecular Crystallography,” Methods in Enzymology, Vol. 115, Diffraction Methods for Biological Macromolecules, Part B, Academic Press, New York, 1985, pp. 90-111. doi:10.1016/0076-6879(85)15009-3
[15] J. E. Debreczeni, G. Bunkoczi, Q. Ma, H. Blaser and G. M. Sheldrick, “In-House Measurement of the Sulfur Anomalous Signal and Its Use for Phasing,” Acta Crystallographica, D59, No. 4, 2003, pp. 688-696. doi:10.1107/S0907444903002646
[16] G. Guncar, C.-I. A. Wang, J. K. Forwood, T. Teh, A.-M. Catanzariti, J.G. Ellis, P.N. Dodds and B. Kobe, “The use of Co2+ for Crystallization and Structure Determination, Using a Conventional Monochromatic X-Ray Source, of Flax Rust Avirulence Protein,” Acta Crystallographica, Vol. F63, No. 3, 2007, pp. 209-213. doi:10.1107/S1744309107004599
[17] M. Yogavel, N. Nithya, A. Suzuki, Y. Sugiyama, T. Yamane, D. Velmurugan and A. Sharma, “Structural Analysis of Actinidin and a Comparison of Cadmium and Sulfur Anomalous Signals from Actinidin Crystals Measured Using In-House Copper- and Chromium-Anode X-ray Sources,” Acta Crystallographica, Vol. D66, No. 12, 2010, pp. 1323-1333. doi:10.1107/S0907444910040394
[18] C. P. Hill, Z. Dauter, E. J. Dodson, G. G. Dodson and M. F. Dunn, “X-Ray Structure of an Unusual Calcium Site and the Roles of Zinc and calciUm in the Assembly, Stability, and Storage of the Insulin Hexamer,” Biochemistry, Vol. 30, No. 4, 1991, pp. 917-924. doi:10.1021/bi00218a006
[19] L.-J. Baker, J. A. Dorocke, R. A. Harris and D. E. Timm, “The Crystal Structure of Yeast Thiamin Pyrophosphokinase,” Structure, Vol. 9, No. 6, 2001, pp. 539-546. doi:10.1016/S0969-2126(01)00615-3
[20] Sigma-Aldrich Corp., St. Louis, MO, USA.
[21] Bruker AXS GmbH, Ostliche Rheinbruckenstr, 49, 76187, Karlsruhe, Germany.
[22] Marresearch, GmbH, Hans-Bockler-Ring 17, D-22851, Norderstedt, Germany.
[23] P. D. Adams, et al., “PHENIX: A Comprehensive Python-Based System for Macromolecular Structure Solution,” Acta Crystallographica, Vol. D66, No. 2, 2010, pp. 213-221. doi:10.1107/S0907444909052925
[24] G. M. Sheldrick, H. A. Hauptman, C. M. Weeks, M. Miller and I. Uson, “Ab Initio Phasing,” In: E. Arnold and M. Rossman, Eds., International Tables for Crystallography, Vol. F, Chapter 16.1, IUCr and Kluwer Academic Publishers, Dordrecht, 2001, pp. 333-345.
[25] A. Perrakis, R. J. Morris and V. S. Lamzin, “Automated Protein Model Building Combined with Iterative Structure Refinement,” Nature Structural & Molecular Biology, Vol. 6, No. 1, 1999, pp. 458-463. doi:10.1038/8263
[26] G. N. Murshudov, A. A. Vagin and E. J. Dodson, “Refinement of Macromolecular Structures by the Maximum-Likelihood Method,” Acta Crystallographica, Vol. D53, No. 3, 1997, pp. 240-255. doi:10.1107/S0907444996012255
[27] CCP4 (Collaborative Computational Project, Number 4), “The CCP4 Suite: Programs for Protein Crystallography,” Acta Crystallographica, Vol. D50, No. 5, 1994, pp. 760-763. doi:10.1107/S0907444994003112
[28] T. C. Don, “Calculation of Anomalous Scattering Factors at Arbitrary Wavelengths,” Journal of Applied Crystallography, Vol. 16, No. 4, 1983, pp. 437-438. doi:10.1107%2FS0021889883010791
[29] G. M. Sheldrick, “Experimental phasing with SHELXC/ D/E: Combining Chain Tracing with Density Modification,” Acta Crystallographica, Vol. D66, No. 4, 2010, pp. 479-485. doi:10.1107%2FS0907444909038360
[30] P. Emsley and K. Cowtan, “Coot: Model-Building Tools for Molecular Graphics,” Acta Crystallographica, Vol. D60, No. 12, 2004, pp. 2126-2132. doi:10.1107%2FS0907444904019158
[31] H. L. Carrell, H. Hoier and J. P. Glusker, “Modes of Binding Substrates and Their Analogues to the Enzyme D-Xylose Isomerase,” Acta Crystallographica, Vol. D50, No. 2, 1994, 113-123. doi:10.1107%2FS0907444993009345
[32] C. Mueller-Dieckmann et al., “On the routine use of soft X-rays in Macromolecular Crystallography. Part IV. Efficient Determination of Anomalous Substructures in Biomacromolecules Using Longer X-ray Wavelengths,” Acta Crystallographica, Vol. D63, 2007, 366-380. doi:10.1107%2FS0907444906055624
[33] K. N. Vennila and D. Velmurugan, “In-House SAD Phasing with Surface-Bound Cerium Ions,” Acta Crystallographica, Vol. F67, No. 12, 2011, pp. 1662-1665. doi:10.1107/S1744309111035718

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.