Electroosmotic Water Vapor Transport across Novel, Smart, Functionalized Conducting Polymer Microporous Membranes in Active Mode at Very High Rates, with Concomitant Chemical Warfare (CW) Agent Blocking
Prasanna Chandrasekhar, Petar Pirgov, Brian J. Zay, David Lawrence, Sean Morefield, Tilghman L. Rittenhouse, Salvatore G. Clementi, Quoc Truong, Russell R. Greene
Ashwin-Ushas Corporation, Marlboro, NJ, USA.
Chemical and Biological Technologies Directorate, US Defense Threat Reduction Agency (DTRA), Fort Belvoir, VA, USA.
Hazardous Materials Research Center (HMRC), Battelle Columbus Laboratories, Battelle Memorial Institute, Columbus, OH, USA.
US Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL), Champaign, IL, USA.
Warrior Science, Technology, and Applied Research Directorate, US Army Natick Soldier Research, Development, and Engineering (RD&E) Center, Natick, MA, USA.
DOI: 10.4236/ampc.2013.34033   PDF    HTML     4,251 Downloads   6,848 Views   Citations

Abstract

Electroosmotic water vapor transport (WVT) across very thin, flexible, functionalized conducting polymer (CP) microporous (μP) membranes at a very high rate is reported. Both passive and active (6 VDC applied) WVT are reported, the latter for the first time ever. WVT occurs with concomitant, effective blocking of chemical warfare (CW) agents, again demonstrated for the first time ever. Initial active liquid||membrane||liquid interface studies demonstrated WVT rates of >1.7 × 10-5g .mm-2s-1, >3 × the highest prior reported values of 5 × 10-6g.mm-2s-1. Subsequent vapor||membrane|| vapor interface studies using industry-standard methods (including ASTM E96B Upright Cup (“WVT”), ASTM F2298 (“Dynamic Moisture Permeation Cell”) and ASTM F1868 (“Sweating Guard Hotplate”) were done at independent, external labs for independent corroboration. These yielded, e.g., WVT values of2564.4 g.m2.d-1 (passive) and3706.7 g.m2d-1 (active), to be compared with the highest (passive) value ever reported previously,984.8 g.m2.d-1 for a μP-Nylon membrane. More than 15 different membrane configurations, porosities and types were studied, including membranes with CP + organophosphate hydrolase (OPH), an enzyme reactive to CW agents. Efficient blocking of the actual CW agents GB, HD, VX is also reported, using the TOP-8-2-501standard. Membranes also passed all Industry-standard durability tests, e.g. ASTM D2261 (Tearing), ASTM D5034 (Breaking), ASTM D3886 (Abrasion), ASTM F392 (Gelbo Flex). Incorporation into smart soldiers garments was demonstrated; power consumption was <1 W.m-2. Mechanisms of enhanced WVT and CW agent blocking in the membranes are discussed.

Share and Cite:

P. Chandrasekhar, P. Pirgov, B. Zay, D. Lawrence, S. Morefield, T. Rittenhouse, S. Clementi, Q. Truong and R. Greene, "Electroosmotic Water Vapor Transport across Novel, Smart, Functionalized Conducting Polymer Microporous Membranes in Active Mode at Very High Rates, with Concomitant Chemical Warfare (CW) Agent Blocking," Advances in Materials Physics and Chemistry, Vol. 3 No. 4, 2013, pp. 217-237. doi: 10.4236/ampc.2013.34033.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Smoluchowski, “ Elektroosomosis,” In: L. Graetz, Ed., Handbuch der Elektrizitaet und des Magnetismus, Barth Verlag, Leipzig, 1921, p. 366.
[2] M. Smoluchowski, “Elektroosmosis,” Zeitschrift für Physikalische Chemie, Vol. 93, 1918, p. 129.
[3] D. C. Henry, “The Cataphoresis of Suspended Particles. Part I. The Equation of Cataphoresis,” Proceedings of the Royal Society A, Vol. 133, No. 133, 1931, p. 106. doi:10.1098/rspa.1931.0133
[4] D. A. Saville, “Electrokinetic Effects with Small Particles,” Annual Review of Fluid Mechanics, Vol. 9, 1977, p. 321.
[5] Y. Xu, “Tutorial: Capillary Electrophoresis,” The Chemical Educator, Vol. 1, No. 2, 1996, pp. 1-14. doi:10.1007/s00897960023a
[6] Zetasizer Nano Series User Manual, “Zeta Potential Theory,” Chapter 16, Malvern Instruments Ltd., Malvern.
[7] B. D. Bowen, “Theory of Electrokinetic Measurements in Sandwich Cells,” Journal of Colloid and Interface Science, Vol. 98, No. 1, 1984, pp. 236-244.
[8] A. Hernandez, R. Lopez, J. I. Calvo and P. Pradanos, “A Network Microcapillary Model for Electrokinetic Phenomena through Microporous Membranes,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 145, No. 1-3, 1998, p. 11.
[9] S. Basu and M. M. Sharma, “An Improved Space-Charge Model for Flow through Charged Microporous Membranes,” Journal of Membrane Science, Vol. 124, No. 1, 1997, pp. 77-91. doi:10.1016/S0376-7388(96)00229-3
[10] B. D. Bowen and R. A. Clark, “Electro-Osomosis at Microporous Membranes and the Determination of ZetaPotential,” Journal of Colloid and Interface Science, Vol. 97, No. 2, 1984. pp. 401-409. doi:10.1016/0021-9797(84)90311-4
[11] M. Kozak and E. J. Davis, “Electrokinetic Phenomena in Fibrous Porous Media,” Journal of Colloid and Interface Science, Vol. 112, No. 2, 1986, pp. 403-410. doi:10.1016/0021-9797(86)90108-6
[12] M. Mullet, P. Fievet, J. C. Reggiani and J. Pagetti, “Surface Electrochemical Properties of Mixed Oxide Ceramic Membranes: Zeta-Potential and Surface Charge Density,” Journal of Membrane Science, Vol. 123, No. 2, 1997, pp. 244-265 doi:10.1016/S0376-7388(96)00220-7
[13] B. Halford, “Raincoats,” Chemical & Engineering News, Vol. 84, No. 24, 2006, p. 39. doi:10.1021/cen-v084n024.p039
[14] L. K. Wolf, “Shielding Soldiers with Fabric,” Chemical & Engineering News, Vol. 90, No. 15, 2012, pp. 36-38.
[15] W. L. Gore & Associates. http://www.gore.com
[16] DuPont breathable fabric. http://www2.dupont.com/Active_Layer/en_US/assets/downloads/K-06012-1%20Active%20Layer.pdf http://www2.dupont.com/Active_Layer/en_US/assets/downloads/APA60015NC000.pdf
[17] E. A. McCullough, M. Kwon and H. Shim, “A Comparison of Standard Methods for Measuring Water Vapour Permeability of Fabrics,” Measurement Science and Technology, Vol. 14, No. 8, 2003, pp. 1402-1408. doi:10.1088/0957-0233/14/8/328
[18] E. A. McCullough, J. Huang and C. S. Kim, “An Explanation and Comparison of Sweating Hot Plate Standards,” Journal of ASTM International, Vol. 1, No. 7, 2004, Article ID: JAI12098. http://www.astm.org/JOURNALS/JAI/PAGES/JAI12098.htm
[19] J. Walker, H. Schreuder-Gibson, W. Yeomans, F. Hoskin, R. C. Cheng, R. Yin and R. Hill, “Development of Self-Decontaminating Textiles with Microporous Membranes,” Report, US Defense Technical Information Center, 2002.
[20] S. K. Vajandar, D. Xu, D. Li, D. Markov, J. Wikswo and W. Hofmeister, “SiO2-Coated Porous Anodic Alumina Membranes for High Flow Rate Electroosmotic Pumping,” Nanotechnology, Vol. 18, No. 27, 2007, Article ID: 275705.
[21] S. A. Miller and C. R. Martin, “Controlling the Rate and Direction of Electroosmotic Flow in Template-Prepared Carbon Nanotube Membranes,” Journal of Electroanalytical Chemistry, Vol. 522, No. 1, 2002, pp. 66-69. doi:10.1016/S0022-0728(02)00648-4
[22] S. K. Li, A.-H. Ghanem and W. I. Higuchi, “Pore Charge Distribution Considerations in Human Epidermal Membrane Electroosmosis,” Journal of Pharmaceutical Sciences, Vol. 88, No. 10, 1999, pp. 1044-1049. doi:10.1021/js980442x
[23] C. K. Lee and J. Hong, “Characterization of Electric Charges in Microporous Membranes,” Journal of Membrane Science, Vol. 39, No. 1, 1988, pp. 79-88. doi:10.1016/S0376-7388(00)80995-3
[24] Detailed Descriptions of All the American Society for Testing and Materials (ASTM) Tests quoted in this communication are available on the ASTM website at: http://www.astm.org/Standard/index.shtml.
[25] Details of Related Tests of the International Standards Organization, ISO, Geneva. http://www.iso.org/iso/home.html
[26] Test Operations Procedure (TOP) 8-2-501, Permeation and Penetration of Air-Permeable, Semipermeable, and Impermeable Materials with Chemical Agents or Simulants. http://ammtiac.alionscience.com/ammt/iacdocs.do?115337
[27] R. B. Lindsay, A. G. Pappas and J. M. Baranoski, “Test Results of Air-Permeable Charcoal Impregnated Suits to Challenge by Chemical and Biological Warfare Agents and Simulants,” Report #A368614, US Defense Technical Information Center, May 2003.
[28] CW Protective Equipment: An Overview of Respiratory and Body Protection. http://www.opcw.org/resp/html/equip.htm
[29] http://www.army.mil/factfiles/equipment/nbc/jslist.html http://tech.military.com/equipment/view/88668/jslist.html
[30] J. M. Sloan, E. Napadensky, D. M. Crawford and Y. A. El-Abd, “Nanostructured Polymer Membranes for Chemical Protective Clothing,” Weapons and Materials Research Directorate, Army Research Lab, Aberdeen Proving Ground, MD, 2004.
[31] E. Napadensky and Y. A. El-Abd, “Breathability and Selectivity of Selected Materials for Protective Clothing,” Report# A602524, US Defense Technical Information Center, 2004.
[32] E. Klemperer, “Toxic Industrial Chemical Tests of Resistance to Permation by Protective Suits,” Report# A063134, US Defense Technical Information Center, 2006.
[33] P. Chandrasekhar, B. J. Zay, G. C. Birur, S. Rawal, A. A. Pierson, L. Kauder and T. Swanson, “Large, Switchable Electrochromism in the Visible Through Far-Infrared in Conducting Polymer Devices,” Advanced Functional Materials, Vol. 12, No. 2, 2002, pp. 95-103. doi:10.1002/1616-3028(20020201)12:2<95::AID-ADFM95>3.0.CO;2-N
[34] P. Chandrasekhar, B. J. Zay, D. A. Ross, T. M. McQueeney, G. C. Birur, T. Swanson, L. Kauder and D. Douglas, “Chromogenic Phenomena in Polymers: Tunable Optical Properties,” S. A. Jenekhe and D. J. Kiserow, Eds., ACS Symposium Series, American Chemical Society, Oxford University Press, New York, 2004, pp. 66-79.
[35] P. Chandrasekhar, US Patent No. 5,995,273, 1999.
[36] P. Chandrasekhar, US Patent No. 6,033,592, 2000.
[37] P. Chandrasekhar, Canadian Patent No. 2,321,894, 2007.
[38] P. Chandrasekhar, European Patent No. 99908208.4, 2009.
[39] P. Chandrasekhar, “Conducting Polymers: Fundamentals and Applications. A Practical Approach,” Springer Verlag, Berlin, 1999.
[40] P. Chandrasekhar, B. J. Zay, T. M. McQueeney, G. C. Birur, V. Sitaram, R. Menon and R. L. Elsenbaumer, Physical, Chemical, Theoretical Aspects of Conducting Polymer Electrochromics in the Visible, IR and Microwave Regions,” Synthetic Metals, Vol. 155, No. 3, 2005, pp. 623-627. doi:10.1016/j.synthmet.2005.08.015
[41] J. Chen, B. Winther-Jensen, C. Lynam, O. Ngamna, S. Moulton, W. Zhang and G. G. Wallace, “A Simple Means to Immobilize Enzyme into Conducting Polymers via Entrapment,” Electrochemical and Solid-State Letters, Vol. 9, No. 7, 2006, pp. H68-H70. doi:10.1149/1.2201306
[42] A. Mulchandani, P. Mulchandani, W. Chen, J. Wang and L. Chen, “Amperometric Thick-Film Strip Electrodes for Monitoring Organophosphate Nerve Agents Based on Immobilized Organophosphorus Hydrolase,” Analytical Chemistry, Vol. 71, No. 11, 1999, pp. 2246-2249. doi:10.1021/ac9813179
[43] Information on the US Army’s Joint Service Lightweight Integrated Suit Technology (JSLIST), including the suits (uniforms) currently deployed. http://www.army.mil/factfiles/equipment/nbc/jslist.html.
[44] E. Wilusz, Q. Truong, D. H. McCullough III., J. Li and S. L. Regen, “Perforated Monolayers for Enhanced Permselectivity in Chemical Biological Barrier Membranes,” Report# A650334, US Defense Technical Information Center, 2004. http://www.dtic.mil/dtic/
[45] A. Prasad, “Polyethylene, Low-Density,” In: J. E. Mark, Ed., Polymer Data Handbook, Oxford University Press, Oxford, 1996, p. 571.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.