Share This Article:

Lipopolysaccharide-Deficient Mutants of Salmonella enterica Have Increased Sensitivity to Catechins

Abstract Full-Text HTML XML Download Download as PDF (Size:544KB) PP. 399-402
DOI: 10.4236/aim.2013.35054    3,968 Downloads   6,376 Views   Citations

ABSTRACT

Antimicrobial activity is one of the well-known biological characteristics of catechins, the main extract of green tea leaves. It is thought that catechins intercalate into the bacterial cell membrane and damage the lipid bilayer. However, the association between catechins and lipopolysaccharides, which consist of an O side chain, core oligosaccharide, and lipid A, has not been previously investigated. In this study, we evaluated the catechin sensitivity of Salmonella enterica mutants that lack the O side chain and have core oligosaccharides of different lengths. These rough mutants were more sensitive to catechins than a bacterial strain with intact lipopolysaccharide. We conclude that the O side chain and core oligosaccharide play an important role in protecting Gram-negative bacteria against the antimicrobial activity of catechins.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Yoshii, A. Okamoto and M. Ohta, "Lipopolysaccharide-Deficient Mutants of Salmonella enterica Have Increased Sensitivity to Catechins," Advances in Microbiology, Vol. 3 No. 5, 2013, pp. 399-402. doi: 10.4236/aim.2013.35054.

References

[1] N. Caturla, E. Vera-Samper, J. Villalain, C. R. Mateo and V. Micol, “The Relationship between the Antioxidant and the Antibacterial Properties of Galloylated Catechins and the Structure of Phospholipid Model Membranes,” Free Radical Biology & Medicine, Vol. 34, No. 6, 2003, pp. 648-662. doi:10.1016/S0891-5849(02)01366-7
[2] T. Taguri, T. Tanaka and I. Kouno, “Antimicrobial Activity of 10 Different Plant Polyphenols against Bacteria Causing Food-Borne Disease,” Biological & Pharmaceutical Bulletin, Vol. 27, No. 12, 2004, pp. 1965-1969. doi:10.1248/bpb.27.1965
[3] H. Ikigai, T. Nakae, Y. Hara and T. Shimamura, “Bactericidal Catechins Damage the Lipid Bilayer,” Biochimica et Biophysica Acta, Vol. 1147, No. 1, 1993, pp. 132-136. doi:10.1016/0005-2736(93)90323-R
[4] H. Arakawa, M. Maeda, S. Okubo and T. Shimamura, “Role of Hydrogen Peroxide in Bactericidal Action of Catechin,” Biological & Pharmaceutical Bulletin, Vol. 27, No. 3, 2004, pp. 277-281. doi:10.1248/bpb.27.277
[5] Y. M. Zhang and C. O. Rock, “Evaluation of Epigallocatechin Gallate and Related Plant Polyphenols as Inhibitors of the FabG and FabI Reductases of Bacterial Type II Fatty-Acid Synthase,” Journal of Biological Chemistry, Vol. 279, No. 30, 2004, pp. 30994-31001. doi:10.1074/jbc.M403697200
[6] T. Hashimoto, S. Kumazawa, F. Nanjo, Y. Hara and T. Nakayama, “Interaction of Tea Catechins with Lipid Bilayers Investigated with Liposome Systems,” Bioscience, Biotechnology, and Biochemistry, Vol. 63, No. 12, 1999, pp. 2252-2255. doi:10.1271/bbb.63.2252
[7] S. Kumazawa, K. Kajiya, A. Naito, H. Saito, S. Tuzi, M. Tanio, M. Suzuki, F. Nanjo, E. Suzuki and T. Nakayama, “Direct Evidence of Interaction of a Green Tea Polyphenol, Epigallocatechin Gallate, with Lipid Bilayers by Solid-State Nuclear Magnetic Resonance,” Bioscience, Biotechnology, and Biochemistry, Vol. 68, No. 8, 2004, pp. 1743-1747. doi:10.1271/bbb.68.1743
[8] Y. Sun, W. C. Hung, F. Y. Chen, C. C. Lee and H. W. Huang, “Interaction of Tea Catechin (–)-Epigallocatechin Gallate with Lipid Bilayers,” Biophysical Journal, Vol. 96, No. 3, 2009, pp. 1026-1035. doi:10.1016/j.bpj.2008.11.007
[9] S. Kondo, T. Iguchi and K. Hisatsune, “A Comparative Study of the Sugar Composition of Lipopolysaccharides Isolated from Vibrio cholerae, ‘Vibrio albensis’ and Vibrio metschnikovii,” Journal of General Microbiology, Vol. 134, No. 6, 1988, pp. 1699-1705.
[10] C. Whitfield, “Biosynthesis of Lipopolysaccharide O Antigens,” Trends in Microbiology, Vol. 3, No. 5, 1995, pp. 178-185. doi:10.1016/S0966-842X(00)88917-9
[11] S. N. Chatterjee and K. Chaudhuri, “Lipopolysaccharides of Vibrio cholerae. I. Physical and Chemical Characterization,” Biochimica et Biophysica Acta, Vol. 1639, No. 2, 2003, pp. 65-79. doi:10.1016/j.bbadis.2003.08.004
[12] E. Vinogradov, C. Wilde, E. M. Anderson, A. Nakhamchik, J. S. Lam and D. A. Rowe-Magnus, “Structure of the Lipopolysaccharide Core of Vibrio vulnificus Type Strain 27562,” Carbohydrate Research, Vol. 344, No. 4, 2009, pp. 484-490. doi:10.1016/j.carres.2008.12.017
[13] N. J. Phillips, D. M. Adin, E. V. Stabb, M. J. McFall-Ngai, M. A. Apicella and B. W. Gibson, “The Lipid A from Vibrio fischeri Lipopolysaccharide: A Unique Structure Bearing a Phosphoglycerol Moiety,” Journal of Biological Chemistry, Vol. 286, No. 24, 2011, pp. 21203-1219. doi:10.1074/jbc.M111.239475
[14] O. Westphal, K. Jann and K. Himmelspach, “Chemistry and Immunochemistry of Bacterial Lipopolysaccharides as Cell Wall Antigens and Endotoxins,” Progress in Allergy, Vol. 33, 1983, pp. 9-39.
[15] N. Kato, M. Ohta, N. Kido, H. Ito, S. Naito, Y. Arakawa and T. Komatsu, “Relationship between Mg2(+)-Induced Hexagonal Assembly of R-Form Lipopolysaccharides and Chemical Structure of Their R-Cores,” Microbiology and Immunologyl, Vol. 34, No. 3, 1990, pp. 245-257.
[16] H. Mayer, S. Schlecht and W. Gromska, “Reactivity of Lipopolysaccharides from Various Salmonella SR and R Chemotypes Ra-Re Mutants with Concanavalin A,” Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A, Vol. 233, No. 3, 1975, pp. 327-334.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.