Spectra of Hydrogen Atom with GUP and Extra Dimensions


We argue that the Generalized Uncertainty Ptinciple (GUP) and the compact Extra dimensions will lead the hydrogen atom has the non bounded state spectra which equal the free particle in extra dimensions. We use Generalized Uncertainty Principle (GUP) to calculate the new energy spectra of hydrogen atom, and which lives in three dimensional Euclidean spaces with one extra dimension. The result is not familiar with our known before that En =0 when n is large enough. In our modified new spectra, we obtain that En,ι,0 = (1+2βι2ρ2) ι222, which is lager than zero. These new spectra give us new method to obtain the existence of extra dimensions. Finally, we find that the spectra are same as part of extra dimensions in planck scale.

Share and Cite:

B. Mu, "Spectra of Hydrogen Atom with GUP and Extra Dimensions," Journal of Modern Physics, Vol. 4 No. 5B, 2013, pp. 29-32. doi: 10.4236/jmp.2013.45B006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. Veneziano, “A Stringy Needs Just Two Constants,” Europhysics Letters, Vol. 2, No.3, 1986, p. 199. doi:10.1209/0295-5075/2/3/006
[2] D. J. Gross and P. F. Mende, “String Theory The Planck Scale,” Nuclear Physics B, Vol. 303, No. 3, 1988, pp. 407-454.doi:10.1016/0550-3213(88)90390-2
[3] D. Amati, M. Ciafaloni and G. Veneziano, “Can Spacetime Be Probed Below the String Size,” Physics Letters, B, Vol. 216, No. 1-2, 1989, pp. 41-47. doi:10.1016/0370-2693(89)91366-X;
[4] K. Konishi, G. Pa_uti and P. Provero, “Minimum Physical Length and the Generalized Uncertainty Principle in String Theory,” Physics Letters B, Vol. 234, No. 3, 1990, pp. 276-284. doi:10.1016/0370-2693(90)91927-4
[5] R. Guida, K. Konishi and P. Provero, “On the Short Distance Behavior of String Theories,” Modern Physics Letters A, Vol. 06, No. 16, 1991, p. 1487. doi:10.1142/S0217732391001603
[6] M. Maggiore,“ A Generalized Uncertainty Principle in Quantum Gravity,” Physics Letters B, Vol. 304, No. 1-2, 1993, pp. 65-69. doi:10.1016/0370-2693(93)91401-8
[7] A. Kempf, G. Mangano and R. B. Mann, “Hilbert Space Representation of the Minimal Length Uncertainty Relation,” Physical Review D, Vol. 52, 1995, pp. 1108-1118. doi:10.1103/PhysRevD.52.1108
[8] A. Kempf, “Non-Pointlike Particles in Harmonic Oscillators,” Journal of Physics A:Mathematical and General, Vol. 30, No. 6, 1997, p. 2093. doi:10.1088/0305-4470/30/6/030
[9] F. Brau, “Minimal Length Uncertainty Relation and the Hydrogen Atom,” Journal of Physics A: Mathematical and General, Vol. 32, No. 44, 1999. doi:10.1088/0305-4470/32/44/308
[10] F. Brau and F. Buisseret, “Minimal Length Uncertainty Relation and Gravitational Quantum Well,” Physical Review D, Vol. 74, 2006, 036002. doi:10.1103/PhysRevD.74.036002
[11] L. N. Chang, D. Minic, N. Okamura and T. Takeuchi, “Exact Solution of the Harmonic Oscillator in Arbitrary Dimensions with Minimal Length Uncertainty Relations,” Physical Review D, Vol. 65, 2002, 125027. doi:10.1103/PhysRevD.65.125027
[12] I. Dadic, L. Jonke and S. Meljanac, “Harmonic Oscillator With Mi-nimal Length Uncertainty Relations and Ladder Opera-tors,” Physical Review D, Vol. 67, 2003, 087701 doi:10.1103/PhysRevD.67.087701
[13] K. Nozari and T. Azizi, “Some Aspects of Gravitational Quantum Me-chanics,” General Relativity and Gravitation, Vol. 38, No. 38, 2006, pp. 735-742. doi:10.1007/s10714-006-0262-9
[14] M. M. Stetsko, “Corrections to the ns Levels of The Hydrogen Atom in Deformed Space With Minimal Length,” Physical Review A, Vol. 74, No. 6, 2006, 062105. doi:10.1103/PhysRevA.74.062105
[15] S. Z. Benczik, “Investigations on the Minimal-Length Uncertainty Rela-tion,” Dissertation for Doctor of Philosophy.
[16] M. V. Battisti and G. Montani, “The Big-Bang Singularity in the Framework of a Generalized Uncertainty Principle,” Physics Letters B, Vol. 656, No. 1-3, 2007, pp. 96-101.doi:10.1016/j.physletb.2007.09.012.
[17] M. V. Battisti and G. Montani, Physics Review D, Vol. 77, 2008,023518.
[18] M. V. Battisti, arXiv: 0805.1178.
[19] S. Das and E. C. Vagenas, Physics Re-view Letters, Vol. 101, 2008, 221301.
[20] B. Mu, H. Wu and H. Yang, arXiv:0909.3635 [hep-th].
[21] B. Mu, “Spectra of harmonic oscillators with GUP and extra di-mensions,” to appear.
[22] I. Antoniadis, “A Possible New Dimension at a Few TeV,” Physics Letters B, Vol. 246, No. 3-4, 1990, pp. 377-384. doi:10.1016/0370-2693(90)90617-F
[23] N. Arka-ni-Hamed, S. Dimopoulos and G. R. Dvali, “The Hie-rarchy Problem and New Dimensions at a Millimeter,” Physics Letters B, Vol. 429, No. 3?4, 1998, pp. 263-272.doi:10.1016/S0370-2693(98)00466-3
[24] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, “New Dimensions at a Millimeter to a Fermi and Superstrings at a Tev,” Physics Letters B, Vol. 436, No. 3-4,1998, pp. 257-263. doi:10.1016/S0370-2693(98)00860-0
[25] L. Randall and R. Sundrum, “Large Mass Hierarchy from A Small Extra Dimension,” Physical Review Letters, Vol. 83, 1999, pp. 3370-3373. doi:10.1103/PhysRevLett.83.3370
[26] L. Randall and R. Sundrum, “An Alternative to Compactification,” Physical Review Letters, Vol. 83, 1999, pp.4690-444693. doi:10.1103/PhysRevLett.83.4690
[27] G. R. Dvali, G. Gabadadze and M. Porrati, “4D Gravity On A Brane in 5D Minkowski Space,” Physics Letters B, Vol. 485, No. 1-3, 2000, pp. 208-214. doi:10.1016/S0370-2693(00)00669-9
[28] T. Appelquist, H. C. Cheng and B. A. Dobrescu, “Bounds on Universal Extra Dimensions,” Physical Review D, Vol. 64, 2001, 035002. doi:10.1103/PhysRevD.64.035002
[29] D. Cre-mades, L. E. Ibanez and F. Marchesano, “Standard Model at Intersecting D5-Branes:Lowering the String Scale,” Nuclear Physics B, Vol. 643, No. 1-3, 2002, pp. 93-130. doi:10.1016/S0550-3213(02)00746-0
[30] C. Kokorelis, “Exact Standard Model Structures From Intersecting D5-Branes,” Nuclear Physics B, Vol. 677, No. 1-2, 2004, pp. 115-163. doi:10.1016/j.nuclphysb.2003.11.007

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.