Plasma-Assisted Chemical Vapor Deposition of TiO2 Thin Films for Highly Hydrophilic Performance

Abstract

Titanium-oxide layer was grown on glass substrate by plasma-assisted chemical vapor deposition (PCVD) using oxygen gas plasma excited by radio-frequency power at 13.56 MHz in the pressure as low as 3mtorr at relatively low temperature below 400oC, and studied on the crystallographic properties with the hydrophilic behavior comparing to the layer deposited by low-pressure chemical vapor deposition (LPCVD). Raman spectra indicated anatase-phase TiO2 layer without amorphous-phase could be formed above 340oC by simultaneous supply of plasma-cracked and non-cracked titanium-tetra-iso-propoxide (TTIP) used as preliminary precursor. Surface Scanning Electron Microscope images indicated the PCVD-layer consists of distinct nanometer-size plate-like columnar grains, in contrast to rugged micrometer-size grains in the LPCVD-layer. Extremely small water contact angle about 5o in dark and the quick conversion to super-hydrophilicity by UV-irradiation with a light-power density as low as 50 W/cm2 were observed on the PCVD- layer grown at 380oC, while the large initial contact angle was above 40o and the response for the UV-irradiation was gradual on the LPCVD-layer.

Share and Cite:

S. Yamauchi and Y. Imai, "Plasma-Assisted Chemical Vapor Deposition of TiO2 Thin Films for Highly Hydrophilic Performance," Crystal Structure Theory and Applications, Vol. 2 No. 1, 2013, pp. 1-7. doi: 10.4236/csta.2013.21001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Wang, K. Hashimoto and A. Fujishima, “Light-Induced Amphiphilic Surfaces,” Nature, Vol. 388, No. 6641, 1997, pp. 431-432. doi:10.1038/41233
[2] A. Mills, A. Lepre, N. Elliott, A. Bhopal, I. P. Parkin and S. A. Neill, “Characterization of the Photocatalyst Pilkington ActivTM: A Reference Film Photocatalyst?” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 160, No. 3, 2003, pp. 213-224. doi:10.1016/S1010-6030(03)00205-3
[3] S. A. Campbell, H. S. Kim, D. C. Gilmer, B. He, T. Ma and W. L. Gladfelter, “Titanium Dioxide (TiO2)-Based Gate Insulators,” IBM Journal of Research and Development, Vol. 43, No. 3, 1999, pp. 383-392. doi:10.1147/rd.433.0383
[4] C. Martinet, V. Paillard, A. Gagnaire and J. Joseph, “Deposition of SiO2 and TiO2 Thin Films by Plasma Enhanced Chemical Vapor Deposition for Antireflection Coating,” Journal of Non-Crystalline Solids, Vol. 216, No. 1, 1997, pp. 77-82. doi:10.1016/S0022-3093(97)00175-0
[5] H. Gerischer and H. Heller, “The Role of Oxygen in Photooxidation of Organic Molecules on Semiconductor Particles,” The Journal of Physical Chemistry, Vol. 95, No. 13, 1991, pp. 5261-5267. doi:10.1021/j100166a063
[6] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, “Photogeneration of Highly Amphiphilic TiO2 Surfaces,” Advanced Materials, Vol. 10, No. 3, 1998, pp. 135-138. doi:10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M
[7] N. A. Kotov, F. C. Meldrum and J. H. Fendler, “Monoparticulate Layers of Titanium Dioxide Nanocrystallites with Controllable Interparticle Distances,” The Journal of Physical Chemistry, Vol. 98, No. 36, 1994, pp. 8827- 8830. doi:10.1021/j100087a002
[8] M. Okuya, N. A. Prokudina, K. Mushika and S. Kaneko, “TiO2 Thin Films Synthesized by the Spray Pyrolysis Deposition (SPD) Technique,” Journal of the European Ceramic Society, Vol. 19, No. 6-7, 1999, pp. 903-906. doi:10.1016/S0955-2219(98)00341-0
[9] M. H. Suhail, G. Mohan Rao and S. Mohan, “Dc Reactive Magnetron Sputtering of Titanium—Structural and Optical Characterization of TiO2 Films,” Journal of Applied Physics, Vol. 71, No. 3, 1992, pp. 1421-1427. doi:10.1063/1.351264
[10] P. Lobl, M. Huppertz and D. Mergel, “Nucleation and Growth in TiO2 Films Prepared by Sputtering and Evaporation,” Thin Solid Films, Vol. 251, No. 1, 1994, pp. 72-79. doi:10.1016/0040-6090(94)90843-5
[11] V. Gauthier, S. Bourgeois, P. Sibillot, M. Maglione and M. Sacilotti, “Growth and Characterization of AP-MOCVD Iron Doped Titanium Dioxide Thin Films,” Thin Solid Films, Vol. 340, No. 1, 1999, pp. 175-182. doi:10.1016/S0040-6090(98)01469-2
[12] W. G. Lee, S. I. Woo, J. C. Kim, S. H. Choi and K. H. Oh, “Preparation and Properties of Amorphous TiO2 Thin Films by Plasma Enhanced Chemical Vapor Deposition,” Thin Solid Films, Vol. 237, No. 1-2, 1994, pp. 105-111. doi:10.1016/0040-6090(94)90245-3
[13] W. Yang and C. A. Wolden, “Plasma-Enhanced Chemical Vapor Deposition of TiO2 Thin Films for Dielectric Applications,” Thin Solid Films, Vol. 515, No. 4, 2006, pp. 1708-1713. doi:10.1016/j.tsf.2006.06.010
[14] S. Mathur and P. Kuhn, “CVD of Titanium Oxide Coatings: Comparative Evaluation of Thermal and Plasma Assisted Processes,” Surface and Coatings Technology, Vol. 201, No. 3-4, 2006, pp. 807-814. doi:10.1016/j.surfcoat.2005.12.039
[15] E. Fredriksson and J. O. Carlsson, “Chemical Vapour Deposition of TiO and Ti2O3 from TiCl4/H2/CO2 Gas Mixtures,” Surface and Coatings Technology, Vol. 73, No. 3, 1995, pp. 160-169. doi:10.1016/0257-8972(94)02378-6
[16] K. H. Ahn, Y. B. Park, D. W. Park, “Kinetic and mechanistic study on the chemical vapor deposition of titanium dioxide thin films by in situ FT-IR using TTIP,” Surf. Coat. Technol., Vol. 171, 2003, pp. 198-204. doi:10.1016/S0257-8972(03)00271-8
[17] M. Yokozawa, H. Iwasa and I. Teramoto, “Vapor Deposition of TiO2,” Japanese Journal of Applied Physics, Vol. 7, 1968, pp. 96-97. doi:10.1143/JJAP.7.96
[18] C. P. Fictorie, J. F. Evans and W. L. Gladfelter, “Kinetic and Mechanistic Study of the Chemical Vapor Deposition of Titanium Dioxide Thin Films Using Tetrakis-(Isopropoxo)-Titanium(IV),” Journal of Vacuum Science & Technology A, Vol. 12, No. 4, 1994, pp. 1108-1113. doi:10.1116/1.579173
[19] T. Ohsaka, F. Izumi and Y. Fujiki, “Raman Spectrum of Anatase, TiO2,” Journal of Raman Spectroscopy, Vol. 7, No. 6, 1978, pp. 321-324. doi:10.1002/jrs.1250070606
[20] A. G. Gaynor, R. J. Gonzalez, R. M. Davis and R. Zallen, “Characterization of Nanophase Titania Particles Synthesized Using in Situ Steric Stabilization,” Journal of Materials Research, Vol. 12, No. 7, 1997, pp. 1755-1765. doi:10.1557/JMR.1997.0242
[21] B. C. Kang, S. B. Lee and J. H. Boo, “Growth of TiO2 Thin Films on Si(100) Substrates Using Single Molecular Precursors by Metal Organic Chemical Vapor Deposition,” Surface and Coatings Technology, Vol. 131, No. 1-3, 2000, pp. 88-92. doi:10.1016/S0257-8972(00)00765-9
[22] S. J. Fonash, “Effects of Stress on Metal-Oxide-Semiconductor Structures,” Journal of Applied Physics, Vol. 44, No. 10, 1973, pp. 4607-4615. doi:10.1063/1.1662009
[23] I. A. Alhomoudi and G. Newaz, “Residual Stresses and Raman Shift Relation in Anatase TiO2 Thin Film,” Thin Solid Films, Vol. 517, No. 23, 2009, pp. 4372-4378. doi:10.1016/j.tsf.2009.02.141
[24] M. Nakamura, S. Kato, T. Aoki, L. Sirghi and Y. Hatanaka, “Role of Terminal OH Groups on the Electrical and Hydrophilic Properties of Hydro-Oxygenated Amorphous TiOx: OH Thin Films,” Journal of Applied Physics, Vol. 90, No. 7, 2001, pp. 3391-3395. doi:10.1063/1.1398599
[25] K. Katsumata, A. Nakajima, H. Yoshikawa, T. Shiota, N. Yoshida, T. Watanabe, Y. Kameshima and K. Okada, “Effect of Microstructure on Photoinduced Hydrophilicity of Transparent Anatase Thin Films,” Surface Science, Vol. 579, No. 2-3, 2005, pp. 123-130. doi:10.1016/j.susc.2005.01.035

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.