Share This Article:

Effect of Hg(II) and Pb(II) Ions on C-Phycocyanin (Spirulina platensis)

Abstract Full-Text HTML XML Download Download as PDF (Size:319KB) PP. 122-127
DOI: 10.4236/opj.2013.31020    3,222 Downloads   5,360 Views   Citations


Influence of Hg(II) and Pb(II) ions on C-Phycocyanin (C-PC) from cyanobacteria Spirulina platensis was investigated using Fluorescence spectroscopy. Fluorescence measurements demonstrate quenching of C-PC emission by Hg(II) and Pb(II), and blue shifts in the fluorescence spectra. The effect of DNA on the fluorescence of Hg(II)-and Pb(II)-C-PC (from Spirulina platensis) complexes was also studied. It was shown that the fluorescence intensity of Hg-C-PC after addition of DNA gave rise to the fluorescence buildup. At the same time, addition of DNA to the Pb(II)-C-PC complexes showed no such effect. In the case of Hg(II)-C-PC, fluorescence intensity significantly decreases in time, while for Pb(II)-C-PC, decrease of the fluorescence intensity is not significant, but blue shift of the peak takes place.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

E. Gelagutashvili and K. Tsakadze, "Effect of Hg(II) and Pb(II) Ions on C-Phycocyanin (Spirulina platensis)," Optics and Photonics Journal, Vol. 3 No. 1, 2013, pp. 122-127. doi: 10.4236/opj.2013.31020.


[1] S.-P. Zhang, J. Xie, J.-P. Zhang, J.-Q. Zhao and L.-J. Jiang, “Electron Spin Resonance Studies on Photosensized Formation of Hydroxyl Radical by C-Phycocyanin from S. platensis,” Biochimica et Biophysica Acta, Vol. 1426, No. 1, 1999, pp. 205-211. doi:10.1016/S0304-4165(98)00153-6
[2] A. J. Tooley, Y. P. A. Cai and A. N. Gleser, “Biosynthesis of a Fluorescent Cyanobacterial C-Phycocyanin Holo-α Subunit in a Heterologous Host,” Proceedings of National Academy of Sciences of USA, Vol. 98, No. 19, 2001, pp. 10560-10565. doi:10.1073/pnas.181340998
[3] R. Henrikson, “Earth Food Spirulina. How This Remarkable Blue-Green Algae Can Transform Your Health and Our Planet,” RoNo. re Enterprises Inc., Laguna Beach, 1989, p. 180.
[4] M. N. Kronick, “The Use of Phycobiliproteins as Fluorescent Labels in Immunoassays,” Journal of Immunological Methods, Vol. 92, No. 1, 1986, pp. 1-13. doi:10.1016/0022-1759(86)90496-5
[5] D. Shastri, M. Kumar and A. Kumar, “Modulation of Lead Toxicity by Spirulina fusiformis,” Phytotherapy Research, Vol. 13, No. 3, 1999, pp. 258-260. doi:10.1002/(SICI)1099-1573(199905)13:3<258::AID-PTR438>3.0.CO;2-2
[6] Y. Yamane, H. Fukino, T. Icho and H. Shimamatsu, “Effect of Spirulina (Spirulina platensis) on the Renal Toxicity Induced by Inorganic Mercury and Para-Aminophenol,” Summary of Abstracts, 108th Conference of the Pharmaceutical Society of Japan, Hiroshima, 4-6 April 1998, p. 58.
[7] M. Suresh, S. K. Mishra, S. Mishra and A. Das, “The Detection of Hg2+ by Cyanobacteria in Aqueous Media,” Chemical Communications, Vol. 14, No. 18, 2009, pp. 2496-2498. doi:10.1039/b821687h
[8] M. Manconia, J. Pendás, N. Ledón, T. Moreira, C. Sinico, L. Saso and A. M. Fadda, “Phycocyanin Liposomes for Topical Anti-Inflammatory Activity: in-Vitro in-Vivo Studies, ” Journal of Pharmacy and Pharmacology, Vol. 61, No. 4, 2009, pp. 423-430. doi:10.1211/jpp.61.04.0002
[9] P. K. Chattopadhyay, B. Gaylord, A. Palmer, N. Jiang, M. A. Raven, G. Lewis, M. A. Reuter, A. K. Nur-ur Rahman, D. A. Price, M. R. Betts and M. Roederer, “Brilliant Violet Fluorophores: A New Class of Ultrabright Fluorescent Compounds for Immunofluorescence Experiments,” Cytometry A, Vol. 81, No. 6, 2012, pp. 456-466. doi:10.1002/cyto.a.22043
[10] F. W. J Teale and R. E. Dale, “Isolation and Spectral Characterization of Phycobiliproterins,” Biochemical Journal, Vol. 116, 1976, pp. 161-165.
[11] S. G. Yan, X. L. Chen, X. Y. Zhang, B. C. Zhou, Y. Z. Zhang, “Spectral Changes of C-Phycocyanin with Different Molar Ratios of SPDP,” Guang Pu Xue Yu Guang Pu Fen Xi, Vol. 28, No. 5, 2008, pp. 1115-1117 [Article in Chinese].
[12] E. S. Gelagutashvili, “Comparative analysis of the Titration of Heavy Metals by C-Phycoctanin,” Proceedings of Georgian Academy of Sciences, Vol. 37, No. 1-2, 2011, pp. 112-114.
[13] F. Yang, Z. J. Guo, Y. Bai and W. J. Zheng, “Spectra of in Situ Reduction of Ag(I) by Phycocyanin and Dynamic Formation of Ag(0),” Guang Pu Xue Yu Guang Pu Fen Xi, Vol. 27,No. 1.2007, pp. 23-27.
[14] E. S. Gelagutashvili., E. N. Ginturi, N. Kuchava and N. Bagdavadze, “Influene of DNA on Ag(I) C-Phycocyanin Complexes,” Physics, Chemical Physics, 2008. arXiv:0806.3378v1
[15] L. David, A. Marx and N. Adir, “High-Resolution Crystal Structures of Trimeric and Rod Phycocyanin,” Journal of Molecular Biology, Vol. 405, No. 1, 2011, pp. 201-213. doi:10.1016/j.jmb.2010.10.036
[16] N. Glazer, “Light Harvesting by Phycobilisomes,” Annual Review of Biophysics and Biophysical Chemistry, Vol. 14, 1985, pp. 44-77. doi:10.1146/
[17] N. Glazer and A. Melis, “Photochemical Reaction Centers; Structure, Organization and Function,” Annual Review of Plant Physiology, Vol. 38, 1987, pp. 11-45. doi:10.1146/annurev.pp.38.060187.000303
[18] G. Tapia, A. Galetovic, E. Lemp, E. PiNo and E. Lissi, “Singlet Oxygen-Mediated Photobleaching of the Prosthetic Group in Hemoglobin and C-Phycocyanin,” Photochemistry and Photobiology, Vol. 70, No. 4, 1999, pp. 499-504.
[19] .T. Schirmer, R. Huber, M. Schneider, W. Bode, M. Miller and M. L. Hackert, “Crystal Structure Analysis and Refinement at 2.5 ? of Hexameric C-Phycocyanin from the Cyanobacterium Agmenellum Quadruplicatum. The Molecular Model and Its Implications for Light-Harvest ing,” Journal of Molecular Biology, Vol. 188, No. 4, 1986, pp. 651-676. doi:10.1016/S0022-2836(86)80013-4
[20] J. M. Womick and A. M. Moran, “Nature of Excited States and Relaxation Mechanisms in C-Phycocyanin,” Journal of Physical Chemistry B, Vol. 113, No. 48, 2009, pp. 15771-15782. doi:10.1021/jp908093x
[21] S. A. Pizarro, “Spectroscopic Study of the Light-Har vesting Protein C-Phycocyanin Associated with Colorless Linker Peptides,” Photochemistry and Photobiology, Vol. 73, No. 5, 2001, pp. 556-563. doi:10.1562/0031-8655(2001)073<0556:SSOTLH>2.0.CO;2
[22] W. F. Vermaas, J. A. Timlin, H. D. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard and D. M. Haaland, “In Vivo Hyperspectral Confocal Fluorescence Imaging to Determine Pigment Localization and Distribution in Cyanobacterial Cells,” Proceedings of National Academy of Sciences of USA, Vol. 105, No. 10, 2008, pp. 4050-4055. doi:10.1073/pnas.0708090105
[23] T. F?rster, “Mechanisms of Energy Transfer,” In: M. Florkin E. H. Stotz, Eds., Comprehensive Biochemistry, Elsevier, Amsterdam, 1967, pp. 22, 61-80.
[24] K. Sauer and H. Scheer, “Excitation Transfer in C-Phycocyanin. F?rster Transfer Rate and Excitation Calculations Based on a New Crystal Structure Data for C-Phycocyanin from Agmenellum Quadruplicatum and Mastigocladus Laminosus,” Biochiimica et Biophysica Acta, Vol. 936, No. 2, 1988, pp. 157-170. doi:10.1016/0005-2728(88)90232-0
[25] Y. Tian and D. Pappas, “Energy Transfer and Light Tolerance Studies in a Fluorescent Tandem Phycobiliprotein Conjugate,” Applied Spectroscopy, Vol. 65, No. 9, 2011, pp. 991-995. doi:10.1366/11-06313

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.