Characterization of NADase-Inactive NAD+ Glycohydrolase in Streptococcus pyogenes

DOI: 10.4236/aim.2013.31015   PDF   HTML   XML   4,659 Downloads   7,359 Views   Citations


Background: Streptococcus pyogenes secretes NAD+ glycohydrolase (NADase, also known as SPN or Nga). All S. pyogenes strains examined to date possess the gene that encodes SPN (spn), but some strains produce SPN that lacks detectable NADase activity. Although there is much evidence to support that SPN’s NADase activity contributes to virulence, there is very little evidence that NADase-inactive SPN has detectable functions. Results: In order to characterize the NADase-inactive SPN, we firstly attempted to clone the NADase-inactive spn allele in Escherichia coli. Although we obtained recombinants which were shown to have the correct size insert, all had some mutations in the spn allele. Therefore, we attempted to change the mutated nucleotides back to the original nucleotides. While a nucleotide mutagenesis (inverse PCR method) easily changed a target nucleotide of control genes back to the original nucleotides, the mutations of NADase-inactive spn allele were never successfully converted back to the original nucleotides. Finally the mutant spn alleles were sub-cloned into another vector (pLZ12-Km2), which is maintained in both E. coli and S. pyogenes. The resultant plasmids were subjected to nucleotide mutagenesis using inverse PCR; the resultant mutagenized plasmid DNAs were used to transform both E. coli and S. pyogenes strains. We observed successful nucleotide substitutions back to the original spn nucleotide sequence in S. pyogenes transformants, but not in E. coli transformants. Thus, the NADase-inactive spn allele was successfully cloned in S. pyogenes, but not in E. coli. However, we could not find an association with NADase-inactive spn allele and virulence in a mouse infection model. Conclusions: These results suggest that NADase-inactive spn allele has some toxic effect to E. coli, but not S. pyogenes. This effect may due to an as of yet unknown function attributable to NADase-inactive SPN.

Share and Cite:

I. Tatsuno, M. Isaka and T. Hasegawa, "Characterization of NADase-Inactive NAD+ Glycohydrolase in Streptococcus pyogenes," Advances in Microbiology, Vol. 3 No. 1, 2013, pp. 91-100. doi: 10.4236/aim.2013.31015.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. A. Cone, D. R. Woodard, P. M. Schlievert and G. S. Tomory, “Clinical and Bacteriologic Observations of a Toxic Shock-Like Syndrome Due to Streptococcus pyogenes,” New England Journal of Medicine, Vol. 317, No. 3, 1987, pp. 146-149. doi:10.1056/NEJM198707163170305
[2] C. W. Hoge, B. Schwartz, D. F. Talkington, R. F. Breiman, E. M. MacNeill and S. J. Englender, “The Changing Epidemiology of Invasive Group A Streptococcal Infections and the Emergence of Streptococcal Toxic ShockLike Syndrome. A Retrospective Population-Based Study,” JAMA, Vol. 269, No. 3, 1993, pp. 384-389. doi:10.1001/jama.1993.03500030082037
[3] B. Schwartz, R. R. Facklam and R. F. Breiman, “Changing Epidemiology of Group A Streptococcal Infection in the USA,” Lancet, Vol. 336, No. 8724, 1990, pp. 1167-1171. doi:10.1016/0140-6736(90)92777-F
[4] D. L. Stevens, “Invasive Group A Streptococcal Infections: The Past, Present and Future,” Pediatric Infectious Disease Journal, Vol. 13, No. 6, 1994, pp. 561-566. doi:10.1097/00006454-199406000-00033
[5] M. Minami, Y. Wakimoto, M. Matsumoto, H. Matsui, Y. Kubota, A. Okada, M. Isaka, I. Tatsuno, Y. Tanaka and T. Hasegawa, “Characterization of Streptococcus pyogenes Isolated from Balanoposthitis Patients Presumably Transmitted by Penile-Oral Sexual Intercourse,” Current Microbiology, Vol. 61, No. 2, 2010, pp. 101-105. doi:10.1007/s00284-010-9581-x
[6] T. Hasegawa, S. N. Hashikawa, T. Nakamura, K. Torii and M. Ohta, “Factors Determining Prognosis in Streptococcal Toxic Shock-Like Syndrome: Results of a Nationwide Investigation in Japan,” Microbes and Infection, Vol. 6, No. 12, 2004, pp. 1073-1077. doi:10.1016/j.micinf.2004.06.001
[7] M. W. Cunningham, “Pathogenesis of Group A Streptococcal Infections,” Clinical Microbiology Revews, Vol. 13, No. 4, 2000, pp. 470-511. doi:10.1128/CMR.13.3.470-511.2000
[8] R. J. Olsen, S. A. Shelburne and J. M. Musser, “Molecular Mechanisms Underlying Group A Streptococcal Pathogenesis,” Cellular Microbiology, Vol. 11, No. 1, 2009, pp. 1-12. doi:10.1111/j.1462-5822.2008.01225.x
[9] A. L. Bricker, C. Cywes, C. D. Ashbaugh and M. R. Wessels, “NAD+-Glycohydrolase Acts as an Intracellular Toxin to Enhance the Extracellular Survival of Group A Streptococci,” Molecular Microbiology, Vol. 44, No. 1, 2002, pp. 257-269. doi:10.1046/j.1365-2958.2002.02876.x
[10] J. C. Madden, N. Ruiz and M. Caparon, “Cytolysin-Mediated Translocation (CMT): A Functional Equivalent of Type III Secretion in Gram-Positive Bacteria,” Cell, Vol. 104, No. 1, 2001, pp. 143-152. doi:10.1016/S0092-8674(01)00198-2
[11] M. A. Meehl, J. S. Pinkner, P. J. Anderson, S. J. Hultgren and M. G. Caparon, “A Novel Endogenous Inhibitor of the Secreted Streptococcal NAD-Glycohydrolase,” PLoS Pathogens, Vol. 1, No. 4, 2005, p. e35. doi:10.1371/journal.ppat.0010035
[12] H. Kimoto, Y. Fujii, S. Hirano, Y. Yokota and A. Taketo, “Genetic and Biochemical Properties of Streptococcal NAD-Glycohydrolase Inhibitor,” Journal of Biological Chemistry, Vol. 281, No. 14, 2006, pp. 9181-9189. doi:10.1074/jbc.M506879200
[13] R. Lutticken, D. Lutticken, D. R. Johnson and L. W. Wannamaker, “Application of a New Method for Detecting Streptococcal Nicotinamide Adenine Dinucleotide Glycohydrolase to Various M Types of Streptoccus pyogenes,” Journal of Clinical Microbiology, Vol. 3, No. 5, 1976, pp. 533-536.
[14] A. Michos, I. Gryllos, A. Hakansson, A. Srivastava, E. Kokkotou and M. R. Wessels, “Enhancement of Streptolysin O Activity and Intrinsic Cytotoxic Effects of the Group A Streptococcal Toxin, NAD-Glycohydrolase,” Journal of Biological Chemistry, Vol. 281, No. 12, 2006, pp. 8216-8223. doi:10.1074/jbc.M511674200
[15] D. Ajdic, W. M. McShan, D. J. Savic, D. Gerlach and J. J. Ferretti, “The NAD-Glycohydrolase (nga) Gene of Streptococcus pyogenes,” FEMS Microbiology Letters, Vol. 191, No. 2, 2000, pp. 235-241. doi:10.1111/j.1574-6968.2000.tb09345.x
[16] T. Karasawa, K. Yamakawa, D. Tanaka, Y. Gyobu and S. Nakamura, “NAD(+)-Glycohydrolase Productivity of Haemolytic Streptococci Assayed by a Simple Fluorescent Method and Its Relation to T Serotype,” FEMS Microbiolgy Letters, Vol. 128, No. 3, 1995, pp. 289-292. doi:10.1111/j.1574-6968.1995.tb07538.x
[17] P. D. Lazarides and A. W. Bernheimer, “Association of Production of Diphosphopyridine Nucleotidase with Serological Type of Group A Streptococcus,” Journal of Bacteriology, Vol. 74, No. 3, 1957, pp. 412-413.
[18] I. Tatsuno, J. Sawai, A. Okamoto, M. Matsumoto, M. Minami, M. Isaka, M. Ohta and T. Hasegawa, “Characterization of the NAD-Glycohydrolase in Streptococcal Strains,” Microbiology, Vol. 153, No. 12, 2007, pp. 4253-4260. doi:10.1099/mic.0.2007/009555-0
[19] D. J. Riddle, D. E. Bessen and M. G. Caparon, “Variation in Streptococcus pyogenes NAD+ Glycohydrolase Is Associated with Tissue Tropism,” Journal of Bacteriology, Vol. 192, No. 14, 2010, pp. 3735-3746. doi:10.1128/JB.00234-10
[20] I. Tatsuno, M. Isaka, M. Minami and T. Hasegawa, “NADase as a Target Molecule of in Vivo Suppression of the Toxicity in the Invasive M-1 Group A Streptococcal Isolates,” BMC Microbiology, Vol. 10, 2010, p. 144. doi:10.1186/1471-2180-10-144
[21] J. J. Ferretti, W. M. McShan, D. Ajdic, D. J. Savic, G. Savic, K. Lyon, C. Primeaux, S. Sezate, A. N. Suvorov, S. Kenton, H. S. Lai, S. P. Lin, Y. Qian, H. G. Jia, F. Z. Najar, Q. Ren, H. Zhu, L. Song, J. White, X. Yuan, S. W. Clifton, B. A. Roe and R. McLaughlin, “Complete Genome Sequence of an M1 Strain of Streptococcus pyogenes,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 8, 2001, pp. 4658-4663. doi:10.1073/pnas.071559398
[22] A. N. Suvorov and J. J. Ferretti, “Physical and Genetic Chromosomal Map of an M Type 1 Strain of Streptococcus pyogenes,” Journal of Bacteriology, Vol. 178, No. 18, 1996, pp. 5546-5549.
[23] A. Podbielski, B. Spellerberg, M. Woischnik, B. Pohl and R. Lutticken, “Novel Series of Plasmid Vectors for Gene Inactivation and Expression Analysis in Group A Streptococci (GAS),” Gene, Vol. 177, No. 1, 1996, pp. 137-147. doi:10.1016/0378-1119(96)84178-3
[24] S. Lukomski, N. P. Hoe, I. Abdi, J. Rurangirwa, P. Kordari, M. Liu, S. J. Dou, G. G. Adams and J. M. Musser, “Nonpolar Inactivation of the Hypervariable Streptococcal Inhibitor of Complement Gene(sic) in Serotype M1 Streptococcus pyogenes Significantly Decreases Mouse Mucosal Colonization,” Infection and Immunity, Vol. 68, No. 2, 2000, pp. 535-542. doi:10.1128/IAI.68.2.535-542.2000
[25] C. D. Ashbaugh, H. B. Warren, V. J. Carey and M. R. Wessels MR, “Molecular Analysis of the Role of the Group A Streptococcal Cysteine Protease, Hyaluronic Acid Capsule, and M Protein in a Murine Model of Human Invasive Soft-Tissue Infection,” Journal of Clinical Investigation, Vol. 102, No. 3, 1998, pp. 550-560. doi:10.1172/JCI3065
[26] N. Okada, I. Tatsuno, E. Hanski, M. Caparon and Sasakawa C, “Streptococcus pyogenes Protein F Promotes Invasion of HeLa Cells,” Microbiology, Vol. 144, No. 11, 1998, pp. 3079-3086. doi:10.1099/00221287-144-11-3079

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.