Share This Article:

Nutrient Input and CO2 Flux of a Tropical Coastal Fluvial System with High Population Density in the Northeast Region of Brazil

Full-Text HTML XML Download Download as PDF (Size:1973KB) PP. 362-375
DOI: 10.4236/jwarp.2013.53A037    3,330 Downloads   5,707 Views   Citations


The carbon dioxide flux through the air-water interface of coastal freshwater ecosystems must be quantified to understand the regional balances of carbon and its transport through coastal and estuarine regions. The variations in air-sea CO2 fluxes in nearshore ecosystems can be caused by the variable influence of rivers. In the present study, the amount of carbon emitted from a tropical coastal river was estimated using climatological and biogeochemical measurements (2002-2010) obtained from the basin of the Capibaribe River, which is located in the most populous and industrialized area of the northeast region of Brazil. The results showed a mean CO2 flux of +225 mmol·m-2·d-1, mainly from organic material from the untreated domestic and industrial wastewaters that are released into the river. This organic material increased the dissolved CO2 concentration in the river waters, leading to a partial pressure of CO2 inthe aquatic environment that reached 31,000 μatm. The months of April, February and December (the dry period) showed the largest monthly means for the variables associated with the carbonate system (, DIC, CO2(aq), CO32-, TA, temperature and pH). This status reflects the state of permanent pollution in the basin of the Capibaribe River, due, in particular, to the discharge of untreated domestic wastewater, which results in the continuous mineralization of organic material. This mineralization significantly increases the dissolved CO2 content in the estuarine and coastal waters, which is later released to the atmosphere.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Araujo, C. Noriega, D. Veleda and N. Lefèvre, "Nutrient Input and CO2 Flux of a Tropical Coastal Fluvial System with High Population Density in the Northeast Region of Brazil," Journal of Water Resource and Protection, Vol. 5 No. 3A, 2013, pp. 362-375. doi: 10.4236/jwarp.2013.53A037.


[1] A. V. Borges, “Do We Have Enough Pieces of the Jigsaw to Integrate CO2 Fluxes in the Coastal Ocean?” Estuaries, Vol. 28, No. 1, 2005, pp. 3-27. doi:10.1007/BF02732750
[2] C. Duarte and Y. Prairie, “Prevalence of Heterotrophy and Atmospheric CO2 Emissions from Aquatic Ecosystems,” Ecosystems, Vol. 8, No. 7, 2005, pp. 862-870. doi:10.1007/s10021-005-0177-4
[3] J. J. Cole, Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. Downing, J. J. Middelburg and J. Melack, “Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget,” Ecosystems, Vol. 10, No. 1, 2007, pp. 172-185. doi:10.1007/s10021-006-9013-8
[4] W. Ludwig, P. Amiotte-Suchet and J. L. Probst, “River Discharges of Carbon to the World’s Oceans: Determining Local Inputs of Alkalinity and of Dissolved and Particulate Organic Carbon,” Comptes Rendus de l’Académie des Sciences, Tome 323, Serie IIa, 1996, pp. 1007-1014.
[5] F. T. Mackenzie, A. Lerman and A. J. Andersson, “Past and Present of Sediment and Carbon Biogeochemical Cycling Models,” Biogeosciences, Vol. 1, No. 1, 2004, pp. 11-32. doi:10.5194/bg-1-11-2004
[6] A. V. Borges, B. Delille and M. Frankignoulle, “Budgeting Sinks and Sources of CO2 in the Coastal Ocean: Diversity of Ecosystems Counts,” Geophysical Research Letters, Vol. 32, No. 14, 2005, Article ID: L14601. doi:10.1029/2005GL023053
[7] T. H. Huang, Y. H. Fu, P. Y. Pan and T. A. Chen, “Fluvial Carbon Fluxes in Tropical Rivers,” Current Opinion in Environmental Sustainability, Vol. 4, No. 2, 2012, pp. 162-169. doi:10.1016/j.cosust.2012.02.004
[8] G. G. Laruelle, H. H. Dürr, C. P. Slomp and A. V. Borges, “Evaluation of Sinks and Sources of CO2 in the Global Coastal Ocean Using a Spatially-Explicit Typology of Estuaries and Continental Shelves,” Geophysical Research Letters, Vol. 37, No. 15, 2010, pp. 1-6. doi:10.1029/2010GL043691
[9] G. M. Abril and A. V. Borges, “Carbon dioxide and methane emissions from estuaries,” In: A. Tremblay, L. Varfalvy, C. Roehm and M. Garneau, Eds., Greenhouse Gases Emissions from Natural Environments and Hydroelectric Reservoirs: Fluxes and Processes, Environmental Science Series, Chapter 7, Springer, Berlin, 2004, pp. 187-207.
[10] C. T. A. Chen and A. V. Borges, “Reconciling Opposing Views on Carbon Cycling in the Coastal Ocean: Continental Shelves as Sinks and Near-Shore Ecosystems as Sources of Atmospheric CO2,” Deep-Sea Research II, Vol. 56, No. 8-10, 2009, pp. 578-590. doi:10.1016/j.dsr2.2009.01.001
[11] S. Kempe, “Sinks of the Anthropogenically Enhanced Carbon Cycle in Surface Fresh Waters,” Journal of Geophysical Research, Vol. 89, No. D3, 1984, pp. 4657-4676. doi:10.1029/JD089iD03p04657
[12] M. F. L. Souza, V. R. Gomes, S. S. Freitas, R. C. B. Andrade and B. A. Knoppers, “Net Ecosystem Metabolism and Nonconservative Fluxes of Organic Matter in a Tropical Mangrove Estuary, Piaui River (NE of Brazil),” Estuaries and Coasts, Vol. 32, No. 1, 2009, pp. 111-122. doi:10.1007/s12237-008-9104-1
[13] A. V. Borges, K. Ruddick, L. S. Schiettecatte and B. Delille, “Net Ecosystem Production and Carbondioxide Fluxes in the Scheldt Estuarine Plume,” BMC Ecology, Vol. 8, No. 15, 2008, pp. 1-10.
[14] J. Salisbury, D. Vandemark, C. Hunt, J. Campbell, B. Jonsson, A. Mahadevan, W. McGillis and H. Xue, “Episodic Riverine Influence on Surface DIC in the Coastal Gulf of Maine,” Estuarine, Coastal and Shelf Research, Vol. 82, No. 1, 2009, pp. 108-118. doi:10.1016/j.ecss.2008.12.021
[15] J. Mortatti, H. Oliveira, J. P. Bibian, R. A. Lopes, J. A. Bonassi and J. L. Probst, “Origem Do Carbono Inorganico Dissolvido no Rio Tiete (Sao Paulo): ReacOes de Equilibrio e Variabilidade Temporal,” Geochimica Brasiliensis, Vol. 20, No. 3, 2006, pp. 267-277.
[16] C. Noriega and M. Araujo, “Nitrogen and Phosphorus Loading in Coastal Watersheds in Northeastern Brazil,” Journal of Coastal Research, Special Issue 56, 2009, pp. 871-875.
[17] Secretaria de Recursos Hidricos-SRH, Pernambuco State Water Resources Agency, “Plano Hidroambiental da Bacia do Rio Capibaribe,” 2011.
[18] Instituto Brasileiro de Geografia e Estatistica-IBGE (Brazilian Institute of Geography and Statistics), “Population Census 2000,” 2012.
[19] CPRH, Pernambuco State Environmental Agency (Agencia Estadual de Meio Ambiente e Recursos Hidricos), “Relatorio de Monitoramento de Bacias Hidrográficas do Estado de Pernambuco,” 2010.
[20] J. O. R. Aragao, “A Influencia dos Oceanos Pacifico e Atlantico na Dinamica do Tempo e do Clima do Nordeste do Brasil,” In: E. Eskinazi-Leca, S. Neumann-Leitao, M. Costa, Eds, Oceanografia: Um Cenário Tropical, Editora Bagaco, Recife, 2004, pp. 131-184.
[21] Instituto Nacional de Meteorologia, INMET (National Institute of Meteorology), “Relatorio Mensal de Dados Meteorologicos 1990-2010,” 2012.
[22] Agencia Nacional de águas-ANA (National Water Agency), “Series Historicas de Dados Hidroweb 1990-2010,” 2010.
[23] G. H. Hargreaves and Z. A. Samani, “Reference Crop Evapotranspiration from Temperature,” Journal of Applied Engineering in Agriculture, Vol. 1, No. 2, 1985, pp. 96-99.
[24] F. J. Millero, T. B. Graham, F. Huang, H. Bustos-Serrano and D. Pierrot, “Dissociation Constants of Carbonic Acid in Seawater as a Function of Salinity and Temperature,” Marine Chemistry, Vol. 100, No. 1-2, 2006, pp. 80-94. doi:10.1016/j.marchem.2005.12.001
[25] R. F. Weiss, “Carbon Dioxide in Water and Seawater: The Solubility of a Non-Ideal Gas,” Marine Chemistry, Vol. 2, No. 3, 1974, pp. 203-215. doi:10.1016/0304-4203(74)90015-2
[26] A. G. Dickson, “Standard Potential of the Reaction: AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and the Standard Acidity Constant of the Ion HSO4- in Synthetic Seawater from 273.15 to 318.15 K,” Journal of Chemical Thermodynamics, Vol. 22, No. 2, 1990, pp. 113-127. doi:10.1016/0021-9614(90)90074-Z
[27] A. G. Dickson, “Thermodynamics of the Dissociation of Boric Acid in Synthetic Seawater from 273.15 to 318.15 K,” Deep Sea Research Part A, Oceanographic Research Papers, Vol. 37, No. 5, 1990, pp. 755-766. doi:10.1016/0198-0149(90)90004-F
[28] R. F. Weiss and B. A. Price, “Nitrous Oxide Solubility in Water and Seawater,” Marine Chemistry, Vol. 8, No. 4, 1980, pp. 347-359. doi:10.1016/0304-4203(80)90024-9
[29] P. A. Raymond and J. J. Cole, “Gas Exchange in Rivers and Estuaries: Choosing a Gas Transfer Velocity,” Estuaries, Vol. 24, No. 2, 2001, pp. 312-317. doi:10.2307/1352954
[30] L. L. Robbins, M. E. Hansen, J. A. Kleypas and S. C. Meylan, “CO2 calc: A User-Friendly Seawater Carbon Calculator for Windows, Max OS X, and iOS (iPhone): US Geological Survey Open-File Report,” 2010, 17 p.
[31] W. Zhai, M. Dai, W. J. Cai, Y. Wang and Z. Wang, “High Partial Pressure of CO2 and Its Maintaining Mechanism in a Subtropical Estuary: The Pearl River Estuary, China,” Marine Chemistry, Vol. 93, No. 1, 2005, pp. 21-32. doi:10.1016/j.marchem.2004.07.003
[32] F. H. Garcia and I. I. Gordon, “Oxygen Solubility in Seawater: Better Fitting Equations,” Limnology and Oceanography, Vol. 37, No. 6, 1992, pp. 1307-1312. doi:10.4319/lo.1992.37.6.1307
[33] B. Benson and D. Krause, “The Concentration and Isotopic Fractionation of Oxygen Dissolved in Freshwater and Seawater in Equilibrium with the Atmosphere,” Limnology and Oceanography, Vol. 29, No. 3, 1984, pp. 620-632. doi:10.4319/lo.1984.29.3.0620
[34] CONAMA, National Council of the Environment, “Determination CONAMA No. 357, 17 March of 2005,” 2005.
[35] C. Neal, W. House, H. Jarvie and A. Eatherall, “The Significance of Dissolved Carbon Dioxide in Major Lowland Rivers Entering the North Sea,” Science of the Total Environment, Vol. 210-211, 1998, pp. 187-203. doi:10.1016/S0048-9697(98)00012-6
[36] G. M. Abril, H. Etcheber, A. V. Borges and M. Frankignoulle, “Excess Atmospheric Carbon Dioxide Transported by Rivers into the Scheldt Estuary,” Comptes Rendus de l’Academie des Sciences Ser II, Sciences de la Terre et des Planetes, Tome 330, Serie IIa, 2000, pp. 762-768.
[37] J. E. Cloern and A. D. Jassby, “Drivers of Change in Estuarine-Coastal Ecosystems: Discoveries from Four Decades of Study in San Francisco Bay,” Reviews of Geophysics, Vol. 50, No. 4, 2012, pp. 1-33. doi:10.1029/2012RG000397
[38] M. L. SanDiego-McGlone, S. V. Smith and V. F. Nicholas, “Stoichiometric Interpretations of C:N:P Ratios in Organic Waste Materials,” Marine Pollution Bulletin, Vol. 40, No. 4, 2000, pp. 325-330. doi:10.1016/S0025-326X(99)00222-2
[39] G. M. Abril and M. Frankignoulle, “Nitrogen-Alkalinity Interactions in the Highly Polluted Scheldt Basin (Belgium),” Water Research, Vol. 35, No. 3, 2001, pp. 844-850. doi:10.1016/S0043-1354(00)00310-9
[40] H. P. Jarvie, C. Neal, D. V. Leachb, G. P. Rylandb, W. A. House and A. J. Robson, “Major Ion Concentrations and the Inorganic Carbon Chemistry of the Humber Rivers,” The Science of Total Environmental, Vol. 194-195, 1997, pp. 285-302. doi:10.1016/S0048-9697(96)05371-5
[41] J. Mortatti, J. L. Probst, H. Oliveira, J. P. Bibian and A. Fernandes, “Fluxo de Carbono Inorganico Dissolvido no Rio Piracicaba (Sao Paulo): Particao e Reacoes de Equilibrio do Sistema Carbonato,” Geociencias, Vol. 25, No. 4, 2006, pp. 429-436.
[42] M. Meybeck and C. Vorosmarty, “Global Transfer of Carbon by Rivers,” Global Change Newsletters, IGBP Newsletter No. 37, 1999, pp. 18-19.
[43] Y. J. M. Koné, G. M. Abril, K. N. Kouadio, B. Delille and A. V. Borges, “Seasonal Variability of Carbon Dioxide in the Rivers and Lagoons of Ivory Coast (West Africa),” Estuaries and Coasts, Vol. 32, No. 2, 2009, pp. 246-260. doi:10.1007/s12237-008-9121-0
[44] J. E. Richey, J. M. Melack, A. K. Aufdenkampe, V. M. Ballester and L. L. Hess, “Outgassing from Amazonian Rivers and Wetlands as a Large Tropical Source of Atmospheric CO2,” Nature, Vol. 416, No. 6881, 2002, pp. 617-620. doi:10.1038/416617a
[45] D. Butman and P. Raymond, “Significant Efflux of Carbon Dioxide from Streams and Rivers in the United States,” Nature Geoscience, Vol. 4, No. 11, 2011, pp. 839-842. doi:10.1038/ngeo1294

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.