Association between microsatellite markers and bovine tuberculosis in Chadian Zebu cattle

Abstract

Bovine tuberculosis (BTB) is a considerable threat to livestock keepers and public health in many developing and underdeveloped countries. We investigated associations between 20 microsatellite markers and three phenotypes for BTB in a sample of the Chadian cattle population. The phenotypes measured were: 1) single intra-dermal comparative cervical tuberculin test (SICCT) performed on live animals, 2) presence of lesion post-slaughter, 3) a bacteriological tissue culture test for Mycobacterium bovis using the samples with observed lesions and 4) a predicted Bayesian model (BM) estimate of a true BTB disease status using all tested animals. All traits were recorded in binary form and as either 1 = presence or 0 = absence. A total of 224 animals for SICCT, lesion and BM traits and 96 animals with bacteriological culture test were genotyped. Generalised linear models were fitted to the binary BTB phenotypes that consisted of age (covariate), sex (2 levels), breed (2 levels) and markers (alleles: 5 - 14 levels) as explanatory variables and implemented in R using glm with a logit link function. The model was fitted for each marker, separately. Six out of 20 markers tested were significantly associated with at least one trait considered; these were ILSTS005, ILSTS006, TGLA227, BM2113 and CSRM66. Genomic regions around these markers may serve as a basis for further functional investigations. This is the first study to report association of microsatellite markers with bovine tuberculosis traits in African or Chadian cattle population.


Share and Cite:

Ali, A. , Thomson, P. and Kadarmideen, H. (2013) Association between microsatellite markers and bovine tuberculosis in Chadian Zebu cattle. Open Journal of Animal Sciences, 3, 27-35. doi: 10.4236/ojas.2013.31004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Smith, N.H., Gordon, S.V., Rua-Domenech, R., Clifton-Hadley, R.S. and Hewinson, R.G. (2006) Bottlenecks and broomsticks: The molecular evolution of Mycobacterium bovis. Nature Reviews Microbiology, 4, 670-681. doi:10.1038/nrmicro1472
[2] Garnier, T., Eiglmeier, K., Ca-mus, J.C., Medina, N., Mansoor, H., Pryor, M., Duthoy, S., Grondin, S., Lacroix, C., Monsempe, C., Simon, S., Harris, B., Atkin, R., Doggett, J., Mayes, R., Keating, L., Wheeler, P.R., Parkhill, J., Barrell, B.G., Cole, S.T., Gordon, S.V. and Hewinson, R.G. (2003) The complete genome sequence of Mycobac-terium bovis. Proceedings of the National Academy of Sciences of the United States of America, 100, 7877-7882. doi:10.1073/pnas.1130426100
[3] Mathers, C.D., Boerma, T. and Fat, D.M. (2009) Global and regional causes of death. British Medical Bulletin, 92, 7-32. doi:10.1093/bmb/ldp028
[4] Houlihan, C.F., Mutevedzi, P.C., Lessells, R.J., Cooke, G.S., Tanser, F.C. and Newell, M.L. (2010) The tuberculosis challenge in a rural South African HIV programme. BMC Infectious Diseases, 10, 1-9. doi:10.1186/1471-2334-10-23
[5] Ayele, W.Y., Neill, S.D., Zinsstag, J., Weiss, M.G. and Pavlik, I. (2004) Bovine tubercu-losis: An old disease but a new threat to Africa. International Journal of Tuberculosis and Lung Disease, 8, 924-937.
[6] Zinsstag, J. (2008) Towards effective control of bovine tuberculosis in Africa: A case for public engagement in science. Ethiopian Journal of Health Development, 22, 117-118.
[7] Ngandolo, B.N., Diguimbaye-Djaibe, C., Müller, B., Didi, L., Hilty, M., Schiller, I., Schelling, E., Mobeal, B., Toguebaye, B.S., Akakpo, A.J. and Zinsstag, J. (2009) Antemortem and postmortem diagnoses of bovine tuberculosis in southern Chad: Case of slaughter cattle. Diagnostics ante et post mortem de la tuberculose bovine au sud du Tchad: Cas des bovins destines a l’abattage. Revue d'Elevage et de Medecine Veterinaire des Pays Tropicaux, 62, 5-12.
[8] Mackintosh, C.G., Qureshi, T., Waldrup, K., Labes, R.E., Dodds, K.G. and Griffin, J.F.T. (2000) Genetic resistance to experimental infection with Mycobacterium bovis in red deer (Cervus elaphus). Infection and Immunity, 68, 1620-1625. doi:10.1128/IAI.68.3.1620-1625.2000
[9] Bermingham, M.L., More, S.J., Good, M., Cromie, A.R., Higgins, I.M., Brother-stone, S. and Berry, D.P. (2009) Genetics of tuberculosis in Irish Holstein-Friesian dairy herds. Journal of Dairy Science, 92, 3447-3456. doi:10.3168/jds.2008-1848
[10] Brotherstone, S., White, I.M.S., Coffey, M., Downs, S.H., Mitchell, A.P., Clifton-Hadley, R.S., More, S.J., Good, M. and Woolliams, J.A. (2010) Evidence of genetic resistance of cattle to infection with Mycobacterium bovis. Journal of Dairy Science, 93, 1234-1242. doi:10.3168/jds.2009-2609
[11] Vordermeier, M., Gobena, A., Berg, S., Bishop, R., Robertson, B.D., Abraham, A., Hewinson, R.G. and Young, D.B. (2012) The influence of cattle breed on susceptibility to bovine tuberculosis in Ethiopia. Comparative Immunology, Microbiology & Infectious Diseases, 35, 227-232. doi:10.1016/j.cimid.2012.01.003
[12] Kadarmideen, H.N., Ali, A.A., Thomson, P.C., Müller, B. and Zinsstag, J. (2011) Poly-morphisms of the SLC11A1 gene and resistance to bovine tu-berculosis in African Zebu cattle. Animal Genetics, 42, 656-658. doi:10.1111/j.1365-2052.2011.02203.x
[13] Vázquez-Flores, F., Alonso, R., Villegas-Sepúlveda, N., Arriaga, C., Pereira-Suárez, A.L., Mancilla, R. and Estrada-Chávez, C. (2006) A microsatel-lite study of bovine solute carrier family 11 a1 (Slc11a1) gene diversity in Mexico in relation to bovine tuberculosis. Genetics and Molecular Biology, 29, 503-507. doi:10.1590/S1415-47572006000300019
[14] Finlay, E.K., Berry, D.P., Wickham, B., Gormley, E.P. and Bradley, D.G. (2012) A genome wide association scan of bovine tuberculosis susceptibility in Holstein-Friesian dairy cattle. Plos One, 7, e30545. doi:10.1371/journal.pone.0030545
[15] Müller, B., Vounatsou, P., Ngandolo, B.N.R., Diguimbaye-Djaibe, C., Schiller, I., Marg-Haufe, B., Oesch, B., Schelling, E. and Zinsstag, J. (2009) Bayesian receiver operating characteristic estimation of multiple tests for diagnosis of bovine tuberculosis in Chadian cattle. Plos One, 4, e8215. doi:10.1371/journal.pone.0008215
[16] Ngandolo, B.N.R., Müller, B., Diguimbaye-Djaibe, C., Schiller, I., Marg-Haufe, B., Cagiola, M., Jolley, M., Surujballi, O., Akakpo, A.J., Oesch, B. and Zinsstag, J. (2009) Comparative assessment of fluorescence polarization and tuberculin skin testing for the diagnosis of bovine tuberculosis in Chadian cattle. Preventive Veterinary Medicine, 89, 81-89. doi:10.1016/j.prevetmed.2009.02.003
[17] Interantion Office of Epizootic (OIE) (2006) Manual of diagnostic tests and vaccines for terrestrial animals, 2004.
[18] Herenda, D., Chambers, P.G., Ettriqui, A., Seneviratna, P. and da Silva, T.J.P. (1994) Manual on meat inspection for developing countries. Food and Agriculture Organisation (FAO) of the United Nations, Rome.
[19] FAO (2004) Secondary guidelines for development of national farm animal geneticresources management plans. Rome, 55.
[20] Kadarmideen, H.N., Janss, L.L.G. and Dekkers, J.C.M. (2000) Power of quantitative trait locus mapping for polygenic binary traits using generalized and regression interval mapping in multi-family half-sib designs. Genetical Research, 76, 305-317. doi:10.1017/S001667230000481X
[21] R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2011. http://www.R-project.org/ .
[22] Smith, E.M., Hoffman, J.I., Green, L.E. and Amos, W. (2012) Preliminary association of microsatellite heterozygosity with footrot in domestic sheep. Livestock Science, 143, 293-299. doi:10.1016/j.livsci.2011.10.009
[23] Acevedo-Whitehouse, K., Vicente, J., Gortazar, C., Hofle, U., Fernandez-de-Mera, I.G. and Amos, W. (2005) Genetic resistance to bovine tuberculosis in the Iberian wild boar. Molecular Ecology, 14, 3209-3217. doi:10.1111/j.1365-294X.2005.02656.x
[24] Zanella, R., Settles, M.L., McKay, S.D., Schnabel, R., Taylor, J., Whitlock, R.H., Schukken, Y., Kessel, J.S.V., Smith, J.M. and Neibergs, H.L. (2011) Identification of loci associated with tolerance to Johne’s disease in Holstein cattle. Animal Genetics, 42, 28-38. doi:10.1111/j.1365-2052.2010.02076.x
[25] Neibergs, H., Zanella, R., Casas, E., Snowder, G.D., Wenz, J., Neibergs, J.S. and Moore, D. (2011) Loci on Bos taurus chromosome 2 and Bos taurus chromosome 26 are linked with bovine respiratory disease and associated with persistent infection of bovine viral diarrhea virus. Journal of Animal Science, 89, 907-915. doi:10.2527/jas.2010-3330

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.