Influence of volatile degassing on initial flow structure and entrainment during undersea volcanic fire fountaining eruptions

Abstract

Release of dissolved volatiles during submarine fire fountaining eruptions can profoundly influence the buoyancy flux at the vent. Theoretical considerations indicate that in some cases buoyant magma can be erupted prior to fragmentation (~75% vesicle volume threshold). Laboratory simulations using immiscible fluids of contrasting density indicate that the structure of the source flow at the vent depends critically on the relative magnitudes of buoyancy and momentum fluxes as reflected in the Richardson number (Ri). Analogue laboratory experiments of buoyant discharges demonstrate a variety of complex flow structures with the potential for greatly enhanced entrainment of surrounding seawater. Such conditions are likely to favor a positive feedback between phreatomagmatic explosions and volatile degassing that will contribute to explosive volcanism. The value of the Richardson number for any set of eruption parameters (magma discharge rate and volatile content) will depend on water depth as a result of the extent to which the exsolved volatile components can expand.

Share and Cite:

Friedman, P. , Carey, S. and Raessi, M. (2012) Influence of volatile degassing on initial flow structure and entrainment during undersea volcanic fire fountaining eruptions. Natural Science, 4, 1002-1012. doi: 10.4236/ns.2012.412129.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Simpson, K. and McPhie, J. (2001) Fluidal-clast breccia generated by submarine fire fountaining, Trooper Creek Formation, Queensland, Australia. Journal of Volcanology and Geothermal Research, 109, 339-355. doi:10.1016/S0377-0273(01)00199-8
[2] Head, J.W. and Wilson, L. (2003) Deep submarine pyroclastic eruptions: Theory and predicted landforms and deposits. Journal of Volcanology and Geothermal Research, 121, 155-193. doi:10.1016/S0377-0273(02)00425-0
[3] Mader, H. (1998) Conduit flow and fragmentation. In: Gilbert, J.S. and Sparks, R.S.J., Eds., The Physics of Explosive Volcanic Eruptions, Geological Society London Special Publications, London, 51-71.
[4] Kokelaar, B.P. (1986) Magma-water interactions in subaqueous and emergent balasatic volcanism. Bulletin of Volcanology, 48, 275-289. doi:10.1007/BF01081756
[5] Wohletz, K.H. (2003) Water/Magma interaction: Physical considerations for the deep submarine environment. In: White, J.D.L., Smellie, J. and Clague, D., Eds., Explosive Subaqueous Volcanism, American Geophysical Union, Washington DC, 25-50. doi:10.1029/140GM02
[6] Parfitt, E. and Wilson, L. (2008) Fundamentals of physical volcanology. Blackwell Publishing, Oxford.
[7] Sparks, R.S.J., Bursik, M., Carey, S.N., Gilbert, J., Glaze, L., Sigurdsson, H. and Woods, A. (1997) Volcanic plumes. Wiley, Chichester.
[8] Newman, S. and Lowenstern, J.B. (2002) VolatileCalc: A silicate melt-H2O-CO2 solution model written in visual basic for Excel. Computers and Geosciences, 28, 597- 604. doi:10.1016/S0098-3004(01)00081-4
[9] Cashman, K. and Mangan, M. (1994) Physical aspects of magmatic degassing. In: Carroll, M. and Holloway, J., Eds., Volatiles in Magmas—Reviews in Mineralogy, Mineralogical Society of America, Chantilly, 447-478.
[10] Sparks, R.S.J. (1978) The dynamics of bubble formation and growth in magmas—A review and analysis. Journal of Volcanology and Geothermal Research, 3, 1-17. doi:10.1016/0377-0273(78)90002-1
[11] Sparks, R.S.J., Barclay, J., Jaupart, C., Mader, H.M. and Phillips, J.C. (1994) Physical aspects of magmatic degassing. I. Experimental and theoretical constraints on vesiculation. In: Carroll, M.R. and Holloway, J.R., Eds., Volatiles in Magmas, Mineralogical Society of America, Chantilly, 413-445.
[12] Gardner, J., Thomas, R., Jaupart, C. and Tait, S. (1996) Fragmentation of magma during plinian volcanic eruptions. Bulletin of Volcanology, 58, 144-162. doi:10.1007/s004450050132
[13] Spieler, O., Kennedy, B., Kueppers, U., Dingwell, D., Scheu, B. and Taddeucci, J. (2004) The fragmentation threshold of pyroclastic rocks. Earth and Planetary Science Letters, 226, 139-148. doi:10.1016/j.epsl.2004.07.016
[14] Mueller, S., Scheu, B., Spieler, O. and Dingwell, D. (2008) Permeability control on magma fragmentation. Geology, 36, 399-402. doi:10.1130/G24605A.1
[15] Dixon, J.E., Stolper, E. and Delaney, J. (1988) Infared spectroscopic measurements of CO2 and H2O in Juan de Fuca ridge basaltic glasses. Earth and Planetary Science Letters, 90, 87-104. doi:10.1016/0012-821X(88)90114-8
[16] Clague, D., Davis, A. and Dixon, J. (2003) Submarine strombolian eruptions on the Gorda Mid-Ocean Ridge. In: White, J.D.L., Smellie, J. and Clague, D., Eds., Explosive Subaqueous Volcanism, AGU Geophysical Monograph, Washington DC, 111-128. doi:10.1029/140GM07
[17] Friedman, P.D., Vadakoot, V., Meyer, W.J. and Carey, S. (2007) Instability threshold of a negatively-buoyant fountain. Experiments in Fluids, 42, 751-759. doi:10.1007/s00348-007-0283-5
[18] Friedman, P.D., Meyer, W.J. and Carey, S. (2006) The fluid dynamics of phase mingling in a subaqueous volcanic eruption—An experimental investigation. Journal of Geophysical Research—Solid Earth, 111, B07201
[19] Friedman, P.D., Winthrop, A.L. and Katz, J. (2001) Droplet, formation and size distributions from an immiscible interface impinged with a vertical negatively buoyant jet. Atomization and Sprays, 11, 269-290.
[20] Friedman, P.D. and Katz, J. (2000) Rise height for negatively buoyant fountains and depth of penetration for negatively buoyant jets impinging on an interface. Journal of Fluids Engineering, 122, 779-782. doi:10.1115/1.1311786
[21] Llewellin, E. and Manga M. (2005) Bubble suspension rheology and implications for conduit flow. Journal of Volcanology and Geothermal Research, 143, 205-217. doi:10.1016/j.jvolgeores.2004.09.018
[22] Büttner, R. and Zimanowski, B. (1998) Physics of thermohydraulic explosions. Physical Review E, 57, 5726-5729.
[23] Manga, M. and Loewenberg, M. (2001) Viscosity of magmas containing highly deformable bubbles. Journal of Volcanology and Geothermal Research, 105, 19-24. doi:10.1016/S0377-0273(00)00239-0
[24] Desjardins, O., Blanquart, G., Balarac, G. and Pitsch, H. (2008) High order conservative finite difference scheme for variable density low Mach number turbulent flows. Journal of Computational Physics, 227, 7125-7159. doi:10.1016/j.jcp.2008.03.027
[25] Desjardins, O., Moureau, V. and Pitsch, H. (2008) An accurate conservative level set/ghost fluid method for simulating turbulent atomization. Journal of Computational Physics, 227, 8395-8416. doi:10.1016/j.jcp.2008.05.027
[26] Desjardins, O. and Pitsch, H. (2009) A spectrally refined interface approach for simulating multi-phase flows. Journal of Computational Physics, 228, 1658-1677. doi:10.1016/j.jcp.2008.11.005
[27] Raessi, M. and Pitsch, H. (2012) Consistent mass and momentum transport for simulating incompressible interfacial flows with large density ratios using the level set method. Computers and Fluids, 63, 70-81. doi:10.1016/j.compfluid.2012.04.002
[28] Kang, M., Fedkiw, R. and Liu, X.-D. (2000) A boundary condition capturing method for multiphase incompressible flow. Journal of Scientific Computing, 15, 323-360. doi:10.1023/A:1011178417620
[29] Wilson, L. and Head, J. (1981) Ascent and eruption of basaltic magma on the Earth and Moon. Journal of Geophysical Research, 86, 2971-3001. doi:10.1029/JB086iB04p02971
[30] Allen, S., Fiske, R. and Cashman, K. (2008) Quenching of steam-charged pumice: Implications for submarine pyroclastic volcanism. Earth and Planetary Science Letters, 274, 40-49. doi:10.1016/j.epsl.2008.06.050
[31] Siebe, C., Komorowski, J.C., Navarro, C., McHone, J., Delgado, H. and Cortes, A. (1995) Submarine eruption near Socorro Island, Mexico: Geochemistry and scanning electron microscopy studies of floating scoria and reticulite. Journal of Volcanology and Geothermal Research, 68, 239- 271. doi:10.1016/0377-0273(95)00029-1
[32] Whitham, A. and Sparks, R.S.J. (1986) Pumice. Bulletin of Volcanology, 48, 209-223. doi:10.1007/BF01087675

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.