A Pilot Trial Testing the Feasibility of Using Molecular-Guided Therapy in Patients with Recurrent Neuroblastoma

DOI: 10.4236/jct.2012.35077   PDF   HTML     4,716 Downloads   6,620 Views   Citations


Background: Neuroblastoma is the most common extracranial solid tumor in children, and treatment options for recurrent neuroblastoma are limited. Using molecular profiling to target the molecular vulnerabilities of neuroblastoma with existing therapeutic agents may result in a rational, data-driven approach with potential to improve clinical outcomes. Methods: The primary objective of this pilot study was to evaluate the feasibility of supporting real-time treatment decisions through predictive modeling of genome-wide mRNA gene expression data from neuroblastoma tumor biopsies. Feasibility was defined as completion of tumor biopsy, histopathological evaluation, RNA extraction and quality control, gene expression profiling within a CLIA-certified laboratory, bioinformatic analysis, generation of a drug predicttion report, molecular tumor board review yielding a formulated treatment plan, and independent medical monitor review within a 2-week period. Results: Five patients with multiply relapsed or refractory neuroblastoma were enrolled between April and June 2010. All biopsies passed histopathology and RNA quality control. Generation of gene expression data and its analysis (3-7 days), reports which linked this data into medically actionable drug candidates (1-5 days), molecular tumor board (1-3 days) and independent medical monitor review (1 day) were all completed in real-time. The average time was 10.5 days for all patients. Conclusion: This study shows that it is feasible to create therapeutic treatment plans based on genomic profiling in less than 12 days. This warrants further testing in a Phase I study to determine safety of predicted treatments and evaluate whether the information obtained in these analyses would result in patient benefit.

Share and Cite:

G. L. Saulnier Sholler, W. Ferguson, G. Bergendahl, E. Currier, S. R. Lenox, J. Bond, M. Slavik, W. Roberts, D. Mitchell, D. Eslin, J. Kraveka, J. Kaplan, N. Parikh, S. Malempati, G. Hanna, E. Eugster, D. Cherba, J. Miller and C. Webb, "A Pilot Trial Testing the Feasibility of Using Molecular-Guided Therapy in Patients with Recurrent Neuroblastoma," Journal of Cancer Therapy, Vol. 3 No. 5, 2012, pp. 602-612. doi: 10.4236/jct.2012.35077.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] American Cancer Society, “Cancer Facts and Figures 2010,” American Cancer Society, Atlanta, 2010.
[2] M. L. Bernstein, J. M. Leclerc, G. Bunin, et al., “A Population-Based Study of Neuroblastoma Incidence, Survival, and Mortality in North America,” Journal of Clinical Oncology, Vol. 10, No. 2, 1992, pp. 323-329.
[3] G. M. Brodeur, J. Pritchard, F. Berthold, et al., “Revisions of the International Criteria for Neuroblastoma Diagnosis, Staging, and Response to Treatment,” Journal of Clinical Oncology, Vol. 11, No. 8, 1993, pp. 1466-1477.
[4] J. R. Park, A. Eggert and H. Caron, “Neuroblastoma: Biology, Prognosis, and Treatment,” Pediatric Clinics of North America, Vol. 55, No.1, 2008, pp. 97-120.
[5] K. K. Matthay, J. G. Villablanca, R. C. Seeger, et al., “Treatment of High-Risk Neuroblastoma with Intensive Chemotherapy, Radiotherapy, Autologous Bone Marrow Transplantation, and 13-cis-Retinoic Acid, Children’s Cancer Group,” The New England Journal of Medicine, Vol. 341, No. 16, 1999, pp. 1165-1173. doi:10.1056/NEJM199910143411601
[6] S. Huang, “Back to the Biology in Systems Biology: What Can We Learn from Biomolecular Networks?” Briefings in Functional Genomics Proteomic, Vol. 2, No. 4, 2004, pp. 279-297. doi:10.1093/bfgp/2.4.279
[7] A. Aranda-Anzaldo, “Cancer Development and Progression: A Non-Adaptive Process Driven by Genetic Drift. Acta Biotheoretica, Vol. 49, No. 2, 2001, pp. 89-108.doi:10.1023/A:1010215424196
[8] E. Wang, A. Lenferink and M. O’Connor-McCourt, “Cancer Systems Biology: Exploring Cancer-Associated Genes on Cellular Networks,” Cellular and Molecular Life Sciences, Vol. 64, No. 14, 2007, pp. 1752-1762. doi:10.1007/s00018-007-7054-6
[9] A. Balakrishnan, F. E. Bleeker, S. Lamba, et al. “Novel Somatic and Germline Mutations in Cancer Candidate Genes in Glioblastoma, Melanoma, and Pancreatic Carcinoma,” Cancer Reseaech, Vol. 67, No. 8, 2007, pp. 3545-3450. doi:10.1158/0008-5472.CAN-07-0065
[10] H. H. Heng, “Cancer Genome Sequencing: The Challenges Ahead,” BioEssays, Vol. 29, No. 8, 2007, pp. 783-794. doi:10.1002/bies.20610
[11] J. K. Lee, D. M. Havaleshko, H. Cho, et al., “A Strategy for Predicting the Chemosensitivity of Human Cancers and Its Application to Drug Discovery,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 104, No. 32, 2007, pp. 13086-13091.doi:10.1073/pnas.0610292104
[12] Y. P. Mosse, M. Laudenslager, L. Longo, et al., “Identification of ALK as a Major Familial Neuroblastoma Predisposition Gene,” Nature, Vol. 455, No. 7251, 2008, pp. 930-935. doi:10.1038/nature07261
[13] R. E. George, T. Sanda, M. Hanna, et al., “Activating Mutations in ALK Provide a Therapeutic Target in Neuroblastoma,” Nature, Vol. 455, No. 7251, 2008, pp. 975-978. doi:10.1038/nature07397
[14] Network CGAR, “Comprehensive Genomic Characterization Defines Human Glioblastoma Genes and Core Pathways,” Nature, Vol. 455, No. 7216, 2008, pp. 1061-1068.
[15] T. Sjoblom, S. Jones, L. D. Wood, et al., “The Consensus Coding Sequences of Human Breast and Colorectal Cancers,” Science, Vol. 314, No. 5797, 2006, pp. 268-274.doi:10.1126/science.1133427
[16] J. P. Overington, B. Al-Lazikani, A. L. Hopkins, “How Many Drug Targets Are There?” Nature Reviews Drug Discovery, Vol. 5, No. 12, 2006, pp. 993-996.doi:10.1038/nrd2199
[17] D. S. Wishart, C. Knox, A. C. Guo, et al., “DrugBank: A Knowledgebase for Drugs, Drug Actions and Drug Targets,” Nucleic Acids Research, Vol. 36, 2008, pp. D901- D906. doi:10.1093/nar/gkm958
[18] G. Bollag, P. Hirth, J. Tsai, et al., “Clinical Efficacy of a RAF Inhibitor Needs Broad Target Blockade in BRAF-Mutant Melanoma,” Nature, Vol. 467, No. 7315, 2010, pp. 596-599. doi:10.1038/nature09454
[19] E. L. Kwak, Y. J. Bang, D. R. Camidge, et al., “Anaplastic Lymphoma Kinase Inhibition in Non-Small-Cell Lung Cancer,” The New England Journal of Medicine, Vol. 363, No. 18, 2010, pp. 1693-1703.doi:10.1056/NEJMoa1006448
[20] J. Lamb, E. D. Crawford, D. Peck, et al., “The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease, Science, Vol. 313, No. 5795, 2006, pp. 1929-1935.
[21] J. E. Staunton, D. K. Slonim, H. A. Coller, et al., “Chemosensitivity prediction by Transcriptional Profiling,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 19, 2001, pp. 10787-10792. doi:10.1073/pnas.191368598
[22] C. P. Webb, “Personalized Medicine: The Need for System Integration in the Design of Targeted Therapies,” In: R. Head, Ed., Computational and Systems Biology: Applications and Methods, Research Signpost, Kerala, 2009.
[23] D. D. Von Hoff, J. J. Stephenson Jr., P. Rosen, et al., “Pilot Study Using Molecular Profiling of patients' Tumors to Find Potential Targets and Select Treatments for Their Refractory Cancers,” Journal of Clinical Oncology, Vol. 28, No. 33, 2010, pp. 4877-4883.doi:10.1200/JCO.2009.26.5983
[24] A. Tsimberidou, N. G. Iskander, D. S. Hong, J. J. Wheler, S. Fu, S. A. Piha-Paul, A. Naing, G. S. Falchook, F. Janku, R. Luthra, S. Wen and R. Kurzrock, “Personalized Medicine in a Phase I Clinical Trials Program: The M.D. Anderson Cancer Center Initiative,” Journal of Clinical Oncology, Vol. 29, 2011, pp. CRA2500.
[25] C. F. Thorn, T. E. Klein, R. B. Altman, “Pharmacogenomics and Bioinformatics: PharmGKB,” The Pharmacogenomics Journal, Vol. 11, No. 4, 2010, pp. 501-505.doi:10.2217/pgs.10.15
[26] Z. Dezso, Y. Nikolsky, T. Nikolskaya, et al., “Identifying Disease-Specific Genes Based on Their Topological Significance in Protein Networks,” BMC Systems Biology, Vol. 3, 2009, p. 36. doi:10.1186/1752-0509-3-36
[27] W. Shi, M. Bessarabova, D. Dosymbekov, et al., “Functional Analysis of Multiple Genomic Signatures Demonstrates That Classification Algorithms Choose Phenotype-Related Genes,” The Pharmacogenomics Journal, Vol. 10, No. 4, 2010, pp. 310-323. doi:10.1038/tpj.2010.35
[28] A. Vellaichamy, Z. Dezso, L. JeBailey, et al., “Topological Significance Analysis of Gene Expression and Proteomic Profiles from Prostate Cancer Cells Reveals Key Mechanisms of Androgen Response,” PLoS One, Vol. 5, No. 6, 2010, p. e10936.
[29] J. S. Gheeya, Q. R. Chen, C. D. Benjamin, et al., “Screening a Panel of Drugs with Diverse Mechanisms of Action Yields Potential Therapeutic Agents Against Neuroblastoma,” Cancer Biology & Therapy, Vol. 8, No. 24, 2009, pp. 2386-2395. doi:10.4161/cbt.8.24.10184
[30] S. Jones, X. Zhang, D. W. Parsons, et al., “Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses,” Science, Vol. 321, No. 5897, 2008, pp. 1801-1806. doi:10.1126/science.1164368
[31] P. Northcott, A. Korshunov, H. Witt, et al., “Medulloblastoma Comprises Four Distinct Molecular Variants,” Clinical Oncology, Vol. 29, No. 11, 2011, pp. 1408-1414.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.