Share This Article:

Grafting Carbon Nanotubes on Titanium Surface for Osteoblast Cell Adhesion and Growth

Abstract Full-Text HTML Download Download as PDF (Size:1048KB) PP. 353-361
DOI: 10.4236/jbnb.2012.33033    4,442 Downloads   7,094 Views   Citations


Poly(ethylene glycol) (PEG) functionalized single-walled carbon nanotubes (SWCNTs) were covalently grafted on the titanium surface with the aim to provide a new platform for human osteoblast cells (HOCs) attachment. Water contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) results revealed that the PEG-functionalized SWCNTs were successfully grafted onto titanium surfaces. Cell viability and proliferation showed that the number of viable cells in culture medium increased with the incubation time for both titanium and SWCNT-modified titanium samples, although the SWCNT-modified titanium presented lower cell viability compared to titanium. Cell adhesion experiments suggested that there were no obvious differences in the number of cells adhered on the titanium and PEG-SWCNT-modified titanium, and the number of adhered cells increased with the culture time. To our best knowledge, for the first time the PEG functionalized SWCNTs were grafted on the titanium surface for human osteoblast cell adhesion and growth. The strategy introduced in the present study provides a new idea for the matrix preparation based on CNTs and titanium for the biological application and the new SWCNT-titanium platform has potential applications in implantable materials and bone tissue engineering.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

C. Pan, Y. Dong and K. D. Jandt, "Grafting Carbon Nanotubes on Titanium Surface for Osteoblast Cell Adhesion and Growth," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 3, 2012, pp. 353-361. doi: 10.4236/jbnb.2012.33033.


[1] R. A. Dubin, G. C. Callegari, J. Konh and A. V. Neimark, “Carbon Nanotube Fibers Are Compatible with Mamma-lian Cells and Neurons,” IEEE Transactions on Nano-bioscience, Vol. 7, No. 1, 2008, pp. 11-14. doi:10.1109/TNB.2008.2000144
[2] K. D. Jandt, “Evolutions, Revolutions and Trends in Bio-materials Science—A Perspective,” Advanced Engineering Materials, Vol. 9, No. 12, 2007, pp. 1035-1050. doi:10.1002/adem.200700284
[3] Y. Liu, D. C. Wu, W. D. Zhang, X. Jiang, C. B. He, T. S. Chung, S. H. Goh and K. W. Leong, “Polyethylenimine-Grafted Multiwalled Carbon Nanotubes for Secure Non-covalent Immobilization and Efficient Delivery of DNA,” Angewandte Chemie International Edition, Vol. 44, No. 30, 2005, pp. 4782-4785. doi:10.1002/anie.200500042
[4] Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen and H. Dai, “Drug Delivery with Carbon Nanotubes for in Vivo Cancer Treatment,” Cancer Research, Vol. 68, 2008, pp. 6652-6660. doi:10.1158/0008-5472.CAN-08-1468
[5] W. Yang, P. Thordarson, J. J. Gooding, S. P. Ringer and F. Braet, “Carbon Nanotubes for Biological and Bio-medical Ap-plications,” Nanotechnology, Vol. 18, No. 41, 2007, pp. 412001-412012. doi:10.1088/0957-4484/18/41/412001
[6] M. Kalbacova, M. Kalbac, L. Dunsch and U. Hempel, “Influence of Single-Walled Carbon Nanotube Films on Metabolic Activity and Adherence of Human Osteoblasts,” Carbon, Vol. 11, No. 30, 2007, pp. 2266-2272. doi:10.1016/j.carbon.2007.06.025
[7] D. Pantarotto, J. P. Briand, M. Prato and A. Bianco, “Translocation of Bioactive Peptides across Cell Membranes by Carbon Nanotubes,” Chemical Communications, Vol. 7, No. 1, 2004, pp. 16-17. doi:10.1039/b311254c
[8] Z. Zhang, X. Yang, Y. Zhang, B. Zeng, S. Wang, T. Zhu, R. B. S. Roden, Y. Chen and R. Yang, “Delivery of Telo-merase Reverse Transcriptase Small Interfering RNA in Complex with Positively Charged Single-Walled Carbon Nanotubes Suppresses Tumor Growth,” Clinical Cancer Research, Vol. 12, 2006, pp. 4933-4939. doi:10.1158/1078-0432.CCR-05-2831
[9] H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. P. Briand, M. Prato, S. Muller and A. Bianco, “Functionalized Carbon Nanotubes Are Non- Cytotoxic and Preserve the Functionality of Primary Immune Cells,” Nano Letters, Vol. 6, No. 12, 2006, pp. 1522-1528. doi:10.1021/nl068003i
[10] K. J. Gilmore, S. E. Moulton and G. G Wallace, “Incorporation of Carbon Nanotubes into the Biomedical Polymer Poly(Styrene-β-Isobutylene-β-Styrene),” Carbon, Vol. 45, No. 2, 2007, pp. 402-410. doi:10.1016/j.carbon.2006.09.015
[11] M. A. Correa-Duarte, N. Wagner, J. Rojas-Chapana, C. Morsczeck, M. Thie and M. Giersig, “Fabrication and Biocompatibility of Carbon Nanotube-Based 3D Networks as Scaffolds for Cell Seeding and Growth,” Nano Letters, Vol. 4, No. 11, 2004, pp. 2233-2236. doi:10.1021/nl048574f
[12] D. Cui, F. Tian, C. S. Ozkan, M. Wang and H. Gao, “Effect of Single Wall Carbon Nanotubes on Human HEK293 Cells,” Toxicology Letters, Vol. 155, No. 1, 2005, pp. 73-85. doi:10.1016/j.toxlet.2004.08.015
[13] J. Chlopek, B. Czajkowska, B. Szaraniec, E. Frackowiak, K. Szostak and F. Beguin, “In Vitro Studies of Carbon Nanotubes Bio-compatibility,” Carbon, Vol. 44, No. 6, 2006, pp. 1106-1111. doi:10.1016/j.carbon.2005.11.022
[14] J. M. W?rle-Knirsch, K. Pulskamp and H. F. Krug, “Oops They Did It Again! Carbon Nanotubes Hoax Scientists in Via-bility Assays,” Nano Letters, Vol. 6. No. 6, 2006, 1261-1268. doi:10.1021/nl060177c
[15] S. Fiorito, A. Serafino, F. Andreola, A. Togna and G. Togna, “Toxicity and Biocompatibility of Carbon Nano- particles,” Journal of Nanoscience and Nanotechnology, Vol. 6, No. 3, 2006, pp. 591-599. doi:10.1166/jnn.2006.125
[16] L. P. Zanello, B. Zhao, H. Hu and R. C. Haddon, “Bone Cell Proliferation on Carbon Nanotubes,” Nano Letters, Vol. 6, No. 3, 2006, pp. 562-567. doi:10.1021/nl051861e
[17] Y. Ni, H. Hu, E. B. Malarkey, B. Zhao, V. Montana, R. C. Haddon and V. Parpura, “Chemically Functionalized Water Soluble Single-Walled Carbon Nanotubes Modulate Neurite Out-growth,” Journal of Nanoscience and Nanotechnology, Vol. 5, No. 10, 2005, pp. 1707-1712. doi:10.1166/jnn.2005.189
[18] M. Shim, N. W. S. Kam, R. J. Chen, Y. Li and H. Dai, “Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition,” Nano Letters, Vol. 2, No. 4, 2002, pp. 285-288. doi:10.1021/nl015692j
[19] A. O. Lobo, E. F. Antunes, M. B. S. Palma, C. Pacheco- Soares, V. J. Trava-Airoldi and E. J. Corat, “Biocompatibility of Multi-Walled Carbon Nanotubes Grown on Titanium and Silicon Surfaces,” Materials Science and Engineering C, Vol. 28, No. 4, 2008, pp. 532-538. doi:10.1016/j.msec.2007.04.016
[20] A. O. Lobo, E. F. Antunes, A. H. A. Machado, C. Pacheco-Soares, V. J. Trava-Airoldi and E. J. Corat, “Cell Viability and Adhe-sion on as Grown Multi-Wall Carbon Nanotube Films,” Materials Science and Engineering C, Vol. 28, No. 2, 2008, pp. 264-269. doi:10.1016/j.msec.2007.01.003
[21] J. L. Mckenzie, M. C. Waid, R. Shi and T. J. Webster, “Decreased Functions of Astrocytes on Carbon Nanofiber Materials,” Biomate-rials, Vol. 25, No. 7-8, 2004, pp. 1309-1317. doi:10.1016/j.biomaterials.2003.08.006
[22] A. Magrez, S. Kasas, V. Salicio, N. Pasquier, W. S. Jin, C. Marco, S. Catsicas, B. Schwaller and L. Forro, “Cellular Toxicity of Carbon-Based Nanomaterials,” Nano Letters, Vol. 6, No. 6, 2006, pp. 1121-1125. doi:10.1021/nl060162e
[23] F. Tian, D. Cui, H. Schwarz, G. G. Estrada and H. Kobayashi, “Cytotoxicity of Sin-gle-Wall Carbon Nanotubes on Human Fibroblasts,” Toxicol in Vitro, Vol. 20, No. 7, 2006, pp. 1202-1212. doi:10.1016/j.tiv.2006.03.008
[24] D. W. Khang, S. Y. Kim, P. Liu-Snyder, G. T. R. Palmore, S. M. Durbin and T. J. Webster, “Enhanced Fi-bronectin Adsorption on Carbon Nanotube/Poly(Carbonate) Urethane: Indepen-dent Role of Surface Nano- Roughness and Associated Surface Energy,” Biomaterials, Vol. 28, No. 32, 2007, pp. 4756-4768. doi:10.1016/j.biomaterials.2007.07.018
[25] R. Verdejo, G. Jell, L. Safinia, A. Bismarck, M. M. Stevens and M. S. P. Shaffer, “Reactive Polyurethane Carbon Nanotube Foams and Their Interactions with Osteoblasts,” Journal of Biomedical Materials Research A, Vol. 88, No. 1, 2009, pp. 65-73. doi:10.1002/jbm.a.31698
[26] B. Y. F. Pow, A. F. T. Mak, M. S. Wong and M. Yang, “Poly(L-Lactide)/Multiwalled Carbon Nanotube Composites: Interaction with Osteoblast-Like Cells in Vitro,” Advanced Materials Research, Vol. 47-50, 2008, pp. 1347-1350. doi:10.4028/
[27] A. R. Boccaccini, F. Chicatun, J. Cho, O. Bretcanu, J. A. Roether, S. Novak and Q. Z. Chen, “Carbon Nanotube Coatings on Bioglass-Based Tissue Engineering Scaf-folds,” Advanced Functional Materials, Vol. 17, No. 15, 2007, pp. 2815-2822. doi:10.1002/adfm.200600887
[28] X. Y. Liu, P. K. Chu and C. X. Ding, “Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Ap-plications,” Materials Science and Engineering R, Vol. 47, No. 3-4, 2004, pp. 49-121. doi:10.1016/j.mser.2004.11.001
[29] S. F. Lamolle, M. Monjo, M. Rubert, H. J. Haugen, S. P. Lyngstadaas and J. E. Ellingsen, “The Effect of Hydro- fluoric Acid Treatment of Titanium Surface on Nanos-tructural and Chemical Changes and the Growth of MC3T3-E1 Cells,” Bio-materials, Vol. 30, No. 5, 2009, pp. 736-742. doi:10.1016/j.biomaterials.2008.10.052
[30] K. Cai, J. Bossert and K. D. Jandt, “Does the Nanometre Scale To-pography of Titanium Influence Protein Adsorption Cand Cell Proliferation?” Colloids and Surfaces B: Biointerfaces, Vol. 49, No. 2, 2006, pp. 136-144. doi:10.1016/j.colsurfb.2006.02.016
[31] K. Cai, Y. Hu and K. D. Jandt, “Surface Engineering of Titanium Thin Films with Silk Fibroin via Layer-by- Layer Technique and Its Effects on Osteoblast Growth Behavior,” Journal of Biomedical Materials Research Part A, Vol. 82, No. 4, 2007, pp. 927-935. doi:10.1002/jbm.a.31233
[32] J. P. Schreckenbach and H. L. Graf, “Preparation and Characterization of Selenium Incorporated Anodic Conversion Coatings on Titanium Surfaces for Biomedical Applications,” Journal of Materials Science: Materials in Medicine, Vol. 19, No. 1, 2008, pp. 233-238. doi:10.1007/s10856-006-0109-7
[33] D. C. Trimbach, B. Keller, R. Bhat, S. Zankovych, R. P?hlmann, S. Schr?ter, J. Bossert and K. D. Jandt, “Enhanced Osteoblast Adhesion to Epoxide-Functionalized Surfaces,” Advanced Functional Materials, Vol. 18, No. 12, 2008, pp. 1723-1731. doi:10.1002/adfm.200701491
[34] D. L. Guillou-Buffello, R. Bareille, M. Gindre, A. Sewing, P. Laugier and J. Amédéé J, “Additive Effect of RGD Coating to Functionalized Titanium Surfaces on Human Os-teoprogenitor Cell Adhesion and Spreading,” Tissue Engineering Part A, Vol. 14, No. 8, 2008, pp. 1445-1455. doi:10.1089/ten.tea.2007.0292
[35] M. Dettin, A. Bagno, R. Gambaretto, G. Lucci, M. T. Conconi, N. Tuccitto, A. M. Menti, C. Grandi, C. Di Bello, A. Licciardello and G. Polzonetti, “Covalent Surface Modification of Titanium Oxide with Different Adhesive Peptides: Surface Characterization and Osteoblast- Like Cell Adhesion,” Journal of Biomedical Materials Research A, Vol. 90, 2008, pp. 35-45.
[36] M. Schuler, G. R. Owen, D. W. Hamilton, M. de Wild, M. Textor, D. M. Brunette and S. G. Tosatti, “Biomimetic Modification of Titanium Dental Implant Model Surfaces Using the RGDSP-Peptide Sequence: A Cell Morphology Study,” Biomaterials, Vol. 27, No. 21, 2006, pp. 4003- 4015. doi:10.1016/j.biomaterials.2006.03.009
[37] M. Morra, C. Cassinelli, G. Cascardo, L. Mazzucco, P. Borzini, M. Fini, G. Giavaresi and R. Giardino, “Collagen I-Coated Titanium Surfaces: Mesenchymal Cell Adhesion and in Vivo Evaluation in Trabecular Bone Implants,” Journal of Biomedical Materials Research A, Vol. 78, No. 3, 2006, pp. 449-458. doi:10.1002/jbm.a.30783
[38] Q. Liu, J. Ding, F. K. Mante, S. L. Wunder and G. R. Baran, “The Role of Surface Functional Groups in Calcium Phosphate Nucleation on Titanium Foil: A Self- Assembled Monolayer Technique,” Biomaterials, Vol. 23, No. 15, 2002, pp. 3103-3111. doi:10.1016/S0142-9612(02)00050-9
[39] A. Naofumi, Y. Atsuro, N. Yoshinobu, A. Tsukasa, U. Motohiro, S. Yoshinori, T. Kazuyuki and W. Fumio, “Carbon Nano-tubes Deposited on Titanium Implant for Osteoblast Attachment,” Journal of Bionanoscience, Vol. 1, No. 1, 2007, pp. 14-16. doi:10.1166/jbns.2007.003
[40] S. Sirivisoot, C. Yao, X. Xiao, B. W. Sheldon and T. J. Webster, “Greater Osteoblast Functions on Multiwalled Carbon Nanotubes Grown from Anodized Nanotubular Titanium for Orthopedic Applications,” Nanotechnology, Vol. 18, No. 36, 2007, Article ID: 365102. doi:10.1088/0957-4484/18/36/365102
[41] J. Chlopek, B. Czajkowska, B. Szaraniec, E. Frackowiak, K. Szostak and F. Beguin, “In Vitro Studies of Carbon Nanotubes Bio-compatibility,” Carbon, Vol. 44, No. 6, 2006, pp. 1106-1111. doi:10.1016/j.carbon.2005.11.022
[42] L. Bacakova, V. Stary and P. Glogar, “Adhesion and Growth of Cells in Culture on Carbon-Carbon Composites with Different Surface Properties,” Journal of Biomaterials and Tissue Engineering, Vol. 2, 1998, pp. 2-5

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.