Influence of MnTE-2-PyP on Inflammation and Lipid Peroxidation in Mouse Asthma Model


Our aim was to investigate the effects of MnTE-2-PyP on some markers of inflammation and lipid peroxidation in mouse asthma model. 24 female mice were divided into four groups: group 1, controls; group 2, injected with ovalbumin (OVA); group 3, treated with MnTE-2-PyP; and group 4, treated with ovalbumin and MnTE-2-PyP. The mice from groups 2 and 4 were injected with 10 μg OVA and 1 mg Imject Alum? in 100 μL phosphate buffered saline (PBS) on days 0 and 14. The animals from groups 1 and 3 were injected with 100 μL PBS + Imject Alum? (1:1). The animals from groups 2 and 4 were subjected to a 30 min aerosol challenge of 1% ovalbumin on days 24, 25 and 26 and those from groups 1 and 3 were subjected to aerosol challenge of PBS at the same time and duration. One hour before inhalation, and 12 hours later the animals from groups 3 and 4 were injected with 100 μL MnTE-2-PyP solution in PBS containing 5 mg/kg. The total cell number, total protein content and 8-isoprostane, IL-4 and IL-5 levels in the bronchialveolar lavage fluid increased in group 2 as compared to the control group. Malone dialdehyde content in the lung homogenate and IgE levels in the serum also increased in this group. The total cell number, total protein content, and levels of 8-isoprostane, IL-4, IL-5 and IgE decreased significantly in group 4 as compared to the OVA group. The parameters set out above in group 3 did not differ significantly from those of the control group. MnTE-2-PyP administered intraperitoneally, 48 hours after the last nebulization, reduced the inflammation and lipid peroxidation in mouse asthma model.

Share and Cite:

L. Terziev, V. Shopova, V. Dancheva, G. Stavreva, M. Atanasova, A. Stoyanova, T. Lukanov and A. Dimitrova, "Influence of MnTE-2-PyP on Inflammation and Lipid Peroxidation in Mouse Asthma Model," Open Journal of Respiratory Diseases, Vol. 2 No. 2, 2012, pp. 37-42. doi: 10.4236/ojrd.2012.22006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. Kirkham and I. Rahman, “Oxidative Stress in Asthma and COPD: Antioxidants as a Therapeutic Strategy,” Pharmacology and Therapeutics, Vol. 111, No. 2, 2006, pp. 476-494. doi:10.1016/j.pharmthera.2005.10.015
[2] J. Bousquet, P. K. Jeffery, W. W. Busse, M. Johnson and A. M. Vignola, “Asthma. From Bronchoconstriction to Airways Inflammation and Remodeling,” American Journal of Respiratory and Critical Care Medicine, Vol. 161, No. 5, 2000, pp. 1720-1745.
[3] R. Dworski, “Oxidant Stress in Asthma,” Thorax, Vol. 55, No. 2, 2000, pp. S51-S53. doi:10.1136/thorax.55.suppl_2.S51
[4] P. K. Jeffery, “Comparison of the Structural and Inflammatory Features of Chronic Obstructive Pulmonary Disease and Asthma Giles F. Filley Lecture,” Chest, Vol. 117.5, No. 1, 2000, pp. 251S-260S. doi:10.1378/chest.117.5_suppl_1.251S
[5] J. Ciencewicki, S. Trivedi and S. R. Kleenberger, “Oxidants and the Pathogenesis of Lung Diseases,” The Journal of Allergy and Clinical Immunology, Vol. 122, No. 3, 2008, pp. 456-470. doi:10.1016/j.jaci.2008.08.004
[6] B. A. Raby, B. Klanderman, A. Murphy, S. Mazza, C. A. Camargo Jr., E. K. Silverman and S. T. Weiss, “A Common Mitochondrial Haplogroup Is Associated with Elevated Total Serum IgE Levels,” The Journal of Allergy and Clinical Immunology, Vol. 120, No. 2, 2007, pp. 351-358. doi:10.1016/j.jaci.2007.05.029
[7] U. Mabalirajan, A. K. Dinda, S. Kumar, R. Roshan, P. Gupta, S. K. Sharma and B. Ghosh, “Mitochondrial Structural Changes and Dysfunction Are Associated with Experimental Allergic Asthma,” Journal of Immunology, Vol. 181, No. 5, 2008, pp. 3540-3548.
[8] P. H. Reddy, “Mitochondrial Dysfunction and Oxidative Stress in Asthma: Implications for Mitochondria-Targeted Antioxidant Therapeutics,” Pharmaceuticals, Vol. 4, No. 3, 2011, pp. 429-456. doi:10.3390/ph4030429
[9] M. Patel and B. J. Day, “Metalloporphyrin Class of Therapeutic Catalytic Antioxidants,” Trends in Pharmacological Sciences, Vol. 2, No. 9, 1999, pp. 359-364. doi:10.1016/S0165-6147(99)01336-X
[10] B. J. Day, “Catalytic Antioxidants: A Radical Approach to New Therapeutics,” Drug Discovery Today, Vol. 9, No. 13, 2004, pp. 557-566. doi:10.1016/S1359-6446(04)03139-3
[11] A. T. Nials and S. Uddin, “Mouse Models of Allergic Asthma: Acute and Chromic Allergen Challenge,” Dis Models and Mechanisms, Vol. 1, No. 4-5, 2008, pp. 213-220. doi:10.1242/dmm.000323
[12] C. Saltini, A. J. Hance, V. J. Ferrance, F. Basset, P. B, Bitterman and R. G. Crystal, “Acurate Quantification of Cells Received by Bronchoalveolar Lavage,” The American Review of Respiratory Disease, Vol. 130, No. 4, 1984, pp. 650-658.
[13] O. H. Lowry, N. J. Rosenhbrough, A. L. Farr and R. J. Randall, “Protein Measurement with the Folin Phenol Reagent,” The Journal of Biological Chemistry, Vol. 193, No. 1, 1951, pp. 265-275.
[14] H. Ohkawa, N. Ohishi and K. Yagi, “Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction,” Analytical Biochemistry, Vol. 95, No. 2, 1979, pp. 351-358. doi:10.1016/0003-2697(79)90738-3
[15] G. DeFreitas-Silva, J. S. Rebouccas, I. Spasojevic, L. Benov, Y. M. Idemori and I. Batinic-Haberle, “SOD-Like Activity of Mn(II)beta-octabromo-meso-tetrakis(N-methyl-pyridinium-3-yl)porphyrin Equals That of the Enzyme Itself,” Arch Biochem Biophys, Vol. 477, No. 1, 2008, pp. 105-112. doi:10.1016/
[16] I. Batinic-Haberle, I. Spasojevich, R. D. Stevens, P. Hambrigh and I. Fridovich, “Manganese(III)meso-tetrakis(ortho-N-alkylpyridyl)porphyrins. Synthesis, Characterization and Catalysis of O2– Dismutation,” Journal of the Chemical Society Dalton Transactions, 2002, No. 13, pp. 2689-2696.
[17] I. Batinic-Haberle, I. Spasojevich, R. D. Stevens, P. Hambright, P. Neta, A. Okado-Matsumoto and I. Fridovich, “New Class of Potent Catalysts of O2– Dismutation. Mn(III)ortho-methoxyethylpyridyl and di-ortho-meth-oxyethylimidazolylporphyrins,” Dalton Transactions, Vol. 11, 2004, pp. 1696-1702.
[18] J. S. Rebou?as, I. Spasojevic, D. H. Tjahjono, A. Richaud, F. Méndez, L. Benov and I. Batinic-Haberle, “Redox Modulation of Oxidative Stress by Mn Porphyrin-Based Therapeutics: The Effect of Charge Distribution,” Dalton Transactions, Vol. 9, 2008, pp. 1233-1242.
[19] H. Saba, I. Batinic-Haberle, S. Munusamy, T. Mitchell, C. Lichti, J. Megyesi and L. A. MacMillan-Crow, “Manganese Porphyrin Reduces Renal Injury and Mitochondrial Damage during Ischemia/Reperfusion,” Free Radical Biology and Medicine, Vol. 42, No. 10, 2007, pp. 1571-1578. doi:10.1016/j.freeradbiomed.2007.02.016
[20] Y. Zhao, L. Chaiswing, J. M. Velez, I. Batinic-Haberle, N. H. Colburn, T. D. Oberley and D. K. St. Clair, “p53 Translocation to Mitochondria Precedes Its Nuclear Translocation and Targets Mitochondrial Oxidative Defense Protein-Manganese Superoxide Dismutase,” Cancer Research, Vol. 65, No. 9, 2005, pp. 3745-3750. doi:10.1158/0008-5472.CAN-04-3835
[21] I. Batinic-Haberle, S. Cuzzocrea, J. Rebou?as, G. Ferrer-Sueta; E. Mazzon, R. Di Paola, R. Radi, I. Spasojevic, L. Benov and D. Salvemini, “Pure MnTBAP Selectively Scavenges Peroxynitrite over Superoxide: Comparison of Pure and Commercial MnTBAP Samples to MnTE-2-PyP in Two Models of Oxidative Stress Injury, an SOD-Specific Escherichia coli Model and Carrageenan-Induced Pleurisy,” Free Radical Biology and Medicine, Vol. 46, No. 2, 2009, pp. 192-201. doi:10.1016/j.freeradbiomed.2008.09.042
[22] I. Batinic-Haberle, J. S. Rebou?as and I. Spasojevic, “Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potencial,” Antioxidants and Redox Signaling, Vol. 13, No. 6, 2010, pp. 877-918. doi:10.1089/ars.2009.2876
[23] I. Spasojevic, C. Yumin, T. Noel, Y. Yu, M. P. Cole, L. Zhang, Y. Zhao, D. K. St Clair and I. Batinic-Haberle, “Mn Porphyrin-Based SOD Mimic, MnTE-2-PyP5+ Targets Mouse Heart Mitochondria,” Free Radical Biology and Medicine, Vol. 42, No. 8, 2007, pp. 1193-1200. doi:10.1016/j.freeradbiomed.2007.01.019
[24] I. Spasojevic, Y. Chen, T. J. Noel, P. Fan, L. Zhang, J. S. Rebou?as, D. K. St Clair and I. Batinic-Haberle, “Pharmacokinetics of the Potent Redox-Modulating Manganese Porphyrin, MnTE-2-PyP5+, in Plasma and Major Organs of B6C3F1 Mice,” Free Radical Biology and Medicine, Vol. 45, No. 7, 2008, pp. 943-949. doi:10.1016/j.freeradbiomed.2008.05.015
[25] B. J. Day, S. Shawen, S. I. Liochev and J. D. Crapo, “A Metalloporphyrin Superoxide Dismutase Mimetic Protects against Paraquat-Induced Endothelial Cell Injury, in vitro,” The Journal of Pharmacology and Experimental Therapeutics, Vol. 275, No. 3, 1995, pp. 1227-1232.
[26] M. Patel, B. J. Day, J. D. Crapo, I. Fridovich and J. O. McNamara, “Requirement for Superoxide in Excitotoxic Cell Death,” Neuron, Vol. 16, No. 2, 1996, pp. 345-355. doi:10.1016/S0896-6273(00)80052-5
[27] B. J. Day and J. D. Crapo, “A Metalloporphyrin Superoxide Dismutase Mimetic Protect against Paraquat-In-duced Lung Injury in vivo,” Toxicology and Applied Pharmacology, Vol. 140, No. 1, 1996, pp.94-100. doi:10.1006/taap.1996.0201
[28] B. J. Day, I. Fridovich and J. D. Crapo, “Manganic Porphyrins Possess Catalase Activity and Protect Endothelial Cells against Hydrogen Peroxide-Mediated Injury,” Archives Biochemistry Biophysics, Vol. 347, No. 2, 1997, pp. 256-262. doi:10.1006/abbi.1997.0341
[29] J. Milano and B. J. Day, “A Catalytic Antioxidant Metalloporphyrin Blocks Hydrogen Peroxide-Induced Mitochondrial DNA Damage,” Nucleic Acids Research, Vol. 28, No. 4, 2000, pp. 968-973. doi:10.1093/nar/28.4.968
[30] C. Szabó, B. J. Day and A. L. Salzman, “Evaluation of the Relative Contribution of Nitric Oxide and Peroxynitrite to the Suppression of Mitochondrial Respiration in Immunostimulated Macrophages Using a Manganese Mesoporphyrin Superoxide Dismutase Mimetic and Peroxynitrite Scavenger,” FEBS Letters, Vol. 381, No. 1-2, 1996, pp. 82-86. doi:10.1016/0014-5793(96)00087-7
[31] G. Ferrer-Sueta, L. Ruiz-Ramirez and R. Radi, “Ternary Copper Complexes and Manganese(III) Tetrakis(4-benzoic acid)porphyrin Catalyze Peroxynitrite-Dependent Nitration of Aromatics,” Chemical Research in Toxicology, Vol. 10, No. 12, 1997, pp. 1338-1344. doi:10.1021/tx970116h
[32] I. L. Jackson, L. Chen, I. Batinic-Haberle and Z. Vujaskovic, “Superoxide Dismutase Mimetic Reduces Hypoxia Induced-O2–, TGF-β and VEGF Production by Macrophages,” Free Radical Research, Vol. 41, No. 1, 2007, pp. 8-14. doi:10.1080/10715760600913150
[33] B. Gauter-Fleckenstein, K. Fleckenstein, K. Owzar, C. Jian, J. S. Rebou?as, I. Batinic-Haberle and Z. Vujaskovic, “Early and Late Administration of MnTE-2-PyP5+ in Mitigation and Treatment of Radiation-Induced Lung Damage,” Free Radical Biology and Medicine, Vol. 48, No. 8, 2010, pp. 1034-1043. doi:10.1016/j.freeradbiomed.2010.01.020
[34] L. Y. Chang and J. D. Crapo, “Inhibition of Airway Inflammation and Hyperreactivity by a Catalytic Antioxidant,” Chest, Vol. 12, No. 3, 2003, pp. 446S.
[35] L. Y. Chang and J. D. Crapo, “Inhibition of Airway Inflammation and Hyperreactivity by an Antioxidant Mimetic,” Free Radical Biology and Medicine, Vol. 33, No. 3, 2002, pp. 379-386. doi:10.1016/S0891-5849(02)00919-X
[36] L.-Y. Chang, M. Subramaniam, B. A. Yoder, B. J. Day, M. C. Ellison, M. E. Sunday and J. D. Crapo, “A Catalytic Antioxidant Attenuates Alveolar Structural Remodeling in Bronchopulmonary Dysplasia,” American Journal of Respiratory and Critical Care Medicine, Vol. 167, No. 1, 2003, pp. 57-64. doi:10.1164/rccm.200203-232OC
[37] H. M. Tse, M. J. Milton and J. D. Piganelli, “Mechanistic Analysis of the Immunomodulatory Effects of a Catalytic Antioxidant on Antigen-Presenting Cells: Implication for Their Use in Targeting Oxidation-Reduction Reactions in Innate Immunity,” Free Radical Biology and Medicine, Vol. 36, No. 2, 2004, pp. 233-247. doi:10.1016/j.freeradbiomed.2003.10.029
[38] J. D. Piganelli, S. C. Flores, C. Cruz, J. Koepp, I. Batinic-Haberle, J. Crapo, B. Day, R. Kachadourian, R. Young, B. Bradley and K. Haskins, “A Metalloporphyrin-Based Superoxide Dismutase Mimic Inhibits Adoptive Transfer of Autoimmune Diabetes by a Diabetogenic T-Cell Clone,” Diabetes, Vol. 51, No. 2, 2002, pp. 347-355. doi:10.2337/diabetes.51.2.347
[39] A. Y. Makinde, A. Rizvi, J. D. Crapo, R. D. Pearlstein, J. M. Slater and D. S. Gridley, “A Metalloporphyrin Anti-oxidant Alters Cytokine Responses after Irradiation in a Prostate Tumor Model,” Radiation Research, Vol. 173, No. 4, 2010, pp. 441-452. doi:10.1667/RR1765.1
[40] X. W. Mao, J. D. Crapo, T. Mekonnen, N. Lindsey, P. Martinez, D. S. Gridley and J. M. Slater, “Radioprotective Effect of a Metalloporphyrin Compound in Rat Eye Model,” Current Eye Research, Vol. 34, No. 1, 2009, pp. 62-72. doi:10.1080/02713680802546948
[41] T.-J. Wu, N. H. Khoo, F. Zhou, B. J. Day and D. A. Parks, “Decreased Hepatic Ischemia-Reperfusion Injury by Manganese-Porphyrin Complexes,” Free Radical Research, Vol. 41, No. 2, 2007, pp. 127-134. doi:10.1080/10715760600801298
[42] G. B. Mackensen, M. Patel, H. Sheng, C. L. Calvi, I. Batinic-Haberle, B. J. Day, L. P. Liang, I. Fridovich, J. D. Crapo, R. D. Pearlstein and D. S. Warner, “Neuroprotection from Delayed Postischemic Administration of a Metalloporphyrin Catalytic Antioxidant,” Journal of Neuroscience, Vol. 21, No. 13, 2001, pp. 4582-4592.
[43] H. Yao, G. Arunachalam, J.-W. Hwang, S. Chung, I. K. Sundar, V. L. Kinnula, J. D. Crapo and I. Rahman, “Extracellular Superoxide Dismutase Protects against Pulmonary Emphysema by Attenuating Oxidative Fragmentation of ECM,” Proceedings of the National Academy of Sciences of USA, Vol. 107, No. 35, 2010, pp. 15571-15576. doi:10.1073/pnas.1007625107

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.