Relationship between cation exchange capacity and the saline phase of Cheliff sol

Abstract

T Measurements of the cation exchange capacity (CEC) show significant soil properties, in particular its ability to retain the cations because of their mobility in the soil. Thirteen soil samples rich in electrolytes of the Cheliff plain (Algeria) were analyzed in order to measure their CEC and to draw up the existing relationship between texture, organic matter content and pH. In calcareous soils, the CECe values are always higher than those measured at pH 7. Regression equations using the percentages of organic carbon and clay as independent variables would make it possible to estimate 90% of the variability of the CEC measured in the ammonium acetate buffered at pH 7 and 89% of the variability for that measured at the pH of the soil. These percentages are particularly useful due to the fact that they make it possible to estimate the CEC of the soil according to the pH only starting from the organic matter and texture. The correlations between the salinity indices, the parameters of the saline phase and the physical properties, show that the cobalt-hexamine method makes it possible to characterize the soil of this plain with more precision than the Metson method. It constitutes a means for following-up the chemical quality of the soil. The Metson method makes it possible to approach the reactivity of the soil in relation with the geometry of the components. The measurement of the CEC at pH 7 makes it possible to envisage the water content at the permanent wilting point of the plants. Finally, it is noticed that a sodisation of the adsorbing compound, which consequently generates a reduction in the structural stability and a reduction in the infiltration always leads to the salinity in these soil types.

Share and Cite:

Saidi, D. (2012) Relationship between cation exchange capacity and the saline phase of Cheliff sol. Agricultural Sciences, 3, 434-443. doi: 10.4236/as.2012.33051.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] McNeal, B.L. and Coleman, N.T. (1966) Effect of solution composition on soil hydraulic conductivity. Soil Science American Proceeding, 20, 308-312. doi:10.2136/sssaj1966.03615995003000030007x
[2] El-Swaify, S.A. (1973) Structural change in tropical soils due to anions in irrigation water. Soil Science, 115, 64-72. doi:10.1097/00010694-197301000-00009
[3] Cass, A. and Sumner, M.E. (1982) Soil pore structural stability and irrigation water quality. I. Empirical sodium stability model. Soil Science Society of American Journal, 46, 503-506. doi:10.2136/sssaj1982.03615995004600030011x
[4] Halitim, A., Robert, M., Tessier, D. and Prost, R. (1984) Influence de cations échangeables (Na+, Ca2+, Mg2+) et de la concentration saline sur le comportement physique (rétention en eau et conductivité hydraulique) de la montmorillonite. Agronomie, 4, 451-459. doi:10.1051/agro:19840507
[5] Daoud, Y. and Robert, M. (1992) Influence of particle size and clay organisation on hydraulic conductivity and moisture retention of clays from saline soils. Applied Clay Science, 6, 293-299. doi:10.1016/S0169-1317(09)90004-7
[6] Tessier, D., Biggore, F. and Bruand, H. (1999) La capacité d’échange: Outil de prévision des propriétés physiques des sols. Compte Rendu d’Académie des Sciences, 85, 37-46.
[7] Heilman, M.O., Carter, O.L. and Gonzalez, C.L. (1965) Ethylene glycol mono ethyl ether for deter-mining surface area of silicate minerals. Soil Science, 100, 356-360. doi:10.1097/00010694-196511000-00011
[8] Ciesielski, H. and Sterckemann, T. (1997) Determination of exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions. Agronomie, 17, 1-7. doi:10.1051/agro:19970101
[9] Charlet, I. and Schlegel, M.L. (1999) La capacité d’échange des sols. Structures et charges à l’interface eau/ particule. Compte Rendu d’Académie d’Agriculture, 85, 7-24.
[10] Bruand, A. and Zimmer, D. (1992) Relation entre la capacité d'échange cationique et le volume poral dans les sols argileux: Incidences sur la morphologie de la phase argileuse à l’échelle des assemblages élémentaires. Compte Rendu d’Académie des Sciences, 315, 223-229.
[11] Orsini, L. and Remy, J.C. (1976) Utilisation du chlorure de cobaltihexammine pour la détermination simultanée de la capacité d’échange et des bases échangeables des sols. Bulletin de l’AFES Science du Sol, 4, 269-275.
[12] Boulaine, J. (1957) Etude des sols des plaines du chélif. Thèse d’Etat, l’Université d’Alger.
[13] Saidi, D. (1985) Etude agropédologique de la plaine de la Mina (Relizane) et évaluation des propriétés physiques des sols. Thèse Ing., INA., Alger.
[14] Daoud, Y. (1983) Contribution à l’étude de la dynamique des sels dans un sol irrigué du périmètre du Haut Cheliff (Algérie). Thèse de Docteur Ingénieur de l’ENSA de Rennes.
[15] Saidi, D. (2005) Influence de la phase saline sur les propriétés physiques des matériaux argileux du Bas Cheliff. Thèse de Doctorat d’Etat, INA, Alger.
[16] Metson, A.J. (1956) Methods of chemical analysis for soil survey samples. New Zealand Soil Bureau Bulletin No. 12.
[17] Monnier, G., Stengel, P. and Fies, J.C. (1973) Une méthode de mesure de la densité apparente de petits agglomérats terreux. Application à l’analyse des systèmes de porosité du sol. Annals Agro-nomique, 25, 533-545.
[18] AFNOR (1996) Qualité des sols. Recueils de normes Fran?aise, AFNOR, Paris.
[19] Tessier, D. and Berrier, J. (1979) Utilisation de la microscopie électronique à balayage dans l’étude des sols. Observations des sols humides soumis à différents pF. Sciences du Sol, 1, 67-82.
[20] Le Bissonnais, Y. (1996) Aggregate stability and assessment of soil crustability and erodibility. I. Theory and methodology. European Journal of Soil Science, 47, 425-437. doi:10.1111/j.1365-2389.1996.tb01843.x
[21] Asseline, J. and Valentin, C. (1978) Le simulateur de pluies de l’ORSTOM. Cahier Hydrologique de l’ORSTOM, 4, 321-347.
[22] Julien, J.L. and Turpin, A. (1999) Surfaces réactives et raisonnement de quelques propriétés chimiques des sols acides. Compte Rendu d’Académie d’Agriculture, 85, 25-35.
[23] Curtin, O. and Rostad, H.P.W. (1997) Cation exchange and buffer potential of Saskatchewan soils estimated from texture, organic matter and pH. Canadian Journal of Soil Science, 77, 621-626. doi:10.4141/S97-015
[24] Bigorre, F., Tessier D. and Pedro, G. (1999) Contribution des argiles et des matières organiques à la rétention de l’eau dans les sols. Signification et r?le fondamental de la capacité d’échange en cations. Compte Rendu d’Académie des Sciences, 330, 245-250.
[25] US Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils. USDA Handbook.
[26] Bruand, A., Duval, O., Gaillard, H., Darthout, R. and Jamagne, M. (1996) Variabilité des propriétés de rétention en eau des sols. Importance de la densité apparente. Etude et Gestion des Sols, 3, 27-40.
[27] Shainberg, I. and Letey, J. (1984) Response of soil to sodic and saline conditions. Hilgardia, 52, 1-57.
[28] Le Bissonnais, Y. (1988) Aggregate stability and assessment of soil crustability and erodibility. I. Theory and methodology. European Journal of Soil Science, 47, 425- 437. doi:10.1111/j.1365-2389.1996.tb01843.x
[29] Yousaf, M., Ali, O.M. and Rhoades, J.D. (1987) Clay dispersion and hydraulic conductivity of some salt-affected arid land soil. Soil Science Society of America Journal, 51, 905-907. doi:10.2136/sssaj1987.03615995005100040013x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.