Share This Article:

Surface Tension, Density and Viscosity Studies on the Associative Behaviour of Oxyethylene-Oxybutylene Diblock Copolymers in Water at Different Temperatures

Full-Text HTML Download Download as PDF (Size:340KB) PP. 82-92
DOI: 10.4236/ijoc.2012.21014    5,841 Downloads   10,009 Views   Citations


The associative properties of methoxy (CH3O-) ended E58B11 and hydroxyl (-OH) ended E56B19 oxyethylene-oxybuty- lene diblock copolymers in aqueous solution at different temperature are reported in this paper. For both copolymers, E represents an oxyethylene (-[CH2CH2O]-) unit and B an oxybutylene (-[CH(C2H5)CH2O]-) unit while the subscripts denote the number average block length. Surface tension measurements were used to find out surface excess concentrations (Γm), area per molecule (αs1 ) at air/water interface and Gibbs free energy for adsorption (△G0ads ) for the pre-micellar region at four temperatures. Likewise thermodynamic parameters of micellization such as, critical micelle concentrations (CMC), enthalpy of micellization (△H0mic ), standard free energy of micellization (△G0mic) and entropy of micellization (△S0mic ), were also obtained using surface tension measurements. Solution densities were used to deter-mine the partial specific volume of micelle ( Vmic) and micellar density (ρmic). Dilute solution viscosities have been used to estimate the intrinsic viscosities [η], solute-solvent interaction parameter (KH) and hydration value of micelle (Wh) at various temperatures. The effect of temperature on the micelle properties is also discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Khan, I. Bibi, S. Pervaiz, K. Mahmood, M. Siddiq and M. Siddiq, "Surface Tension, Density and Viscosity Studies on the Associative Behaviour of Oxyethylene-Oxybutylene Diblock Copolymers in Water at Different Temperatures," International Journal of Organic Chemistry, Vol. 2 No. 1, 2012, pp. 82-92. doi: 10.4236/ijoc.2012.21014.


[1] J. Rao, J. Zhang, J. Xu and S. Liu, “Cononsolvency-In- duced Micellization Kinetics Ofpyreneend-Labeled Diblock Copolymer of Isopropylacrylamide and Oligo (Ethylene Glycol) Methyl Ether Methacrylate Studied by Stopped- Flow Light-Scattering and Fluorescence,” Journal of Col- loids and Interface Science, Vol. 328, 2008, pp. 196-202.
[2] M. C. Jones, H. Gao and C. Leroux, “The Influence of Polymer Topology on Pharmacoki-netics: Differences between Cyclic and Linear PEGylated Poly(Acrylic Acid) Comb Polymers,” Journal of Controlled Release, Vol. 132, No. 3, 2008, pp. 208-215. doi:10.1016/j.jconrel.2008.05.006
[3] C. Booth and D. At-twood, “Effects of Block Architecture and Composition on the Association Properties of Poly (Oxyalkylene) Copolymers in Aqueous Solution,” Macromolecular Rapid Communications, Vol. 21, No. 9, 2000, pp. 501-527. doi:10.1002/1521-3927(20000601)21:9<501::AID-MARC501>3.0.CO;2-R
[4] W. Loh, “Encyclopedia of Surface and Colloid Science,” In: A. T. Hubbard, Ed., Marcel Dekker, New York, 2002, pp. 802-813.
[5] W. Hamley, “The Physics of Block Copolymers,” Oxford University Press, Oxford, 1998.
[6] K. Yu and A. Esenberg, “Bilayer Morphologies of Self-Assembled Crew-Cut Aggregates of Amphiphilic PS-b-PEO Diblock Copolymers in Solution,” Macromolecules, Vol. 31, No. 11, 1998, pp. 3509-35918. doi:10.1021/ma971419l
[7] G. J. Liu, “Functional Nano-structures of Block Copolymers,” Chinese Journal of Polymer Science, Vol. 18, No. 3, 2000, pp. 255-262.
[8] J. P. Spatz, T. Herzog, S. Mobmer, P. Ziemann and M. Moller, “Micellar Inorganic-Polymer Hybrid Systems—A Tool for Nanolitho-graphy,” Advanced Materials, Vol. 11, No. 2, 1999, pp. 149-153. doi:10.1002/(SICI)1521-4095(199902)11:2<149::AID-ADMA149>3.0.CO;2-W
[9] S. A. Jenekhe and X. L. Chen, “Self-Assembled Aggregates of Rod-Coil Block Copolymers and Their Solubilization and Encapsulation of Fullerenes,” Science, Vol. 279, No. 5358, 1998, pp. 1903-1907. doi:10.1126/science.279.5358.1903
[10] M. Iijma, Y. Nagasaki, T. Okada, M. Kato and K. Kataoka, “Core-Polymerized Reactive Micelles from He- terotelechelic Amphiphilic Block Copolymers,” Macromolecules, Vol. 32, No. 4, 1999, 1140-1146. doi:10.1021/ma9815962
[11] U. Otsuka, Y. Nagasaki, K. Ka-taoka, T. Okano and Y. Sakurai, “Reactive-PEG-Polylactide Block Copolymer for Tissue Engineering,” Polymer Prepr, Vol. 9, No.2, 1998, 128-129.
[12] J. Yuan, Z. Xu, S. Cheng and L. Feng, “The Aggregation of Polystyrene-b-Poly(Ethylene Oxide)-b-Polystyrene Trib- lock Copolymers in Aqueous Solu-tion,” European Polymer Journal, Vol. 38, No. 8, 2002, pp. 1537-1546. doi:10.1016/S0014-3057(02)00025-3
[13] C. Booth, G. E. Yu and V. M Nace, “Amphiphilic Block Copolymers: Self-Assembly and Applications,” In: P. Alexandridis and B. Lindman, Eds., Elsevier, Amsterdam, 2000.
[14] C. Booth, D. Attwood and C. Price, “Self-Association of Block Copo-ly(Oxyalkylene)S in Aqueous Solution. Effects of Composition Block Length and Block Architecture,” Physical Chemistry Chemical Physics, Vol. 8, No. 31, 2006, pp. 3612-3622. doi:10.1039/b605367j
[15] P. Alexandridis, “Poly(Ethylene Oxide)/Poly(Propylene Oxide) Block Copolymer Surfactants,” Current Opinion in Colloid and Interface Science, Vol. 2, No. 5, 1997, pp. 478-489. doi:10.1016/S1359-0294(97)80095-7
[16] E. Castro, P. Ta-booda and V. Mosquera, “Behavior of a Styrene Oxide-Ethylene Oxide Diblock Copolymer/Sur- factant System: A Thermodynamic and Spectroscopy Study,” Journal of Physical Chemistry B, Vol. 109, No. 12, 2005, pp. 5592-5599. doi:10.1021/jp044766n
[17] X. Li, S. D. Wettig and R. E. Verrall, “Isothermal Titration Calorimetry and Dynamic Light Scattering Studies of Interactions between Gemini Surfactants of Different Structure and Pluronic Block Copolymers,” Journal Colloid and Interface Science, Vol. 282, No. 2, 2005, pp. 466-477. doi:10.1016/j.jcis.2004.08.153
[18] J. Mata, T. Joshi, D. Varade, G. Ghosh and P. Bahadur, “Aggregation Behavior of a PEO-PPO-PEO Block Copolymer + Ionic Surfactants Mixed Systems in Water and Aqueous Salt Solutions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 247, No. 1-3, 2004, pp. 1-7. doi:10.1016/j.colsurfa.2004.07.011
[19] H. Desai, D. Varade, V. K. Aswal, P. S. Goyal and P. Bauhau, “Micellar Characte-ristics of Diblock Polyacrylate-Polyethylene Oxide Copolymers in Aqueous Media,” European Polymer Journal, Vol. 42, No. 3, 2006, pp. 593-601. doi:10.1016/j.eurpolymj.2005.08.016
[20] N. Jain, V. K. Aswal, P. S. Goyal and P. Bahadur, “Salt Induced Micellization and Micelle Structures of’ PEO: PPO: PEO Block Copolymers in Aqueous Solution,” Colloids and Surfaces A, Vol. 173, No. 1, 2000, pp. 85-94. doi:10.1016/S0927-7757(99)00514-2
[21] E. Castro, P. Ta-booda and V. Mosquera, “Cosolvent Effects on the Micellization of Oxyphenyl(copoly)ethylene Oxide Copolymers in Aqueous Solution,” Journal of Physical Chemistry B, Vol. 110, No. 26, 2006, pp. 13113- 13123. doi:10.1021/jp061322d
[22] R. Ganguly, V. K. Aswal, P. A. Hassan, I. K. Gopala- krishnan and J. V. Yakhmi, “Sodium Chloride and Ethanol Induced Sphere to Rod Transition of Triblock Copolymer Micelles,” Journal of Physical Chemistry B, Vol. 109, No. 12, 2005, pp. 5653-5658. doi:10.1021/jp0468408
[23] A. Kelarakis, S. M. Mai, V. Ha-vredaki, V. M. Nace and C. Booth, “Effect of End Group on the Micelle Properties of Diblock Copolymers of Ethylene Oxide and 1,2-Butylene Oxide,” Physical Chemistry Chemical Physics, Vol. 3, 2001, pp. 4037-4043. doi:10.1039/b105515c
[24] M. Maskos, “Influence of the Solvent and the End Groups on the Morphology of Cross-Linked Amphiphilic Poly (1,2-Butdiene)-b-poly(ethylene oxide) Nanoparticles,” Polymer, Vol. 47, 2006, pp. 1172-1178. doi:10.1016/j.polymer.2005.12.045
[25] C. E. Tattershall, N. P. Jerome and P. M. Budd, “Oxyethylene/Oxybutylene Block Copolymers as Structure-Directing Agents in the Preparation of Mesoporous Silica,” Journal of Materials Chemistry, Vol. 11, 2001, pp. 2979-2984. doi:10.1039/b105484h
[26] M. Siddiq, W. Harrison, C. E. Tattershall and P. M. Budd, “Micelle Prop-erties of a Dimethylamino- and a Trime- thylammonium-Tipped Oxyethylene-Oxybutylene Diblock Copolymer in Water,” Physi-cal Chemistry Chemical Phy- sics, Vol. 5, No. 18, 2003, pp. 3968-3972. doi:10.1039/b306624j
[27] M. J. Rosen, “Surfactants and In-terfacial Phenomenon,” Wiley Inter Science Publication, New York, 1978, pp. 83-122.
[28] S. Barbosa, M. A. Cheema, P. Taboada and V. Mosquera, “Effect of Copolymer Architecture on the Micellization and Gelation of Aqueous Solutions of Copolymers of Ethylene Oxide and Styrene Oxide,” The Journal of Phy- sical Chemistry B, Vol. 111, No. 37, 2007, pp. 10920- 10928. doi:10.1021/jp073481i
[29] A. Khan and M. Siddiq, “Surface Activity and Micellar Behavior of Dimethylaminoand Trimethylammonium- Tipped Oxyethylene-Oxybutylene Diblock Copolymers in Aqueous Media,” Journal of Applied Polymer Science, Vol.118, No. 6, 2010, pp. 3324-3332. doi:10.1002/app.32226
[30] T. P. Lodge, “Block Copolymers: Past Successes and Fu- ture Challenges,” Macromolecular Chemistry and Physics, Vol. 2, 2003, pp. 265-273. doi:10.1002/macp.200290073
[31] P. Alexandridis, V. Tha-nassiou, S. Fukuda and T. A. Haton, “Surface Activity of Poly(ethylene oxide)-block- Poly(propylene oxide)-block-Poly(ethylene oxide) Copolymers,” Langmuir, Vol. 10, 1994, pp. 2604-2612. doi:10.1021/la00020a019
[32] N. K. Reddy, P. J. Fordham, D. Attwood and C. Booth, “Association and Surface Properties of Block-copoly- (oxyethylene/oxypropylene/oxyethylene) L64,” Journal of the Chemical Society, Faraday Transactions, Vol. 86, No. 9, 1990, pp. 1569-1572. doi:10.1039/ft9908601569
[33] S. B. Sultana, S. G. T. Bhat and A. K. Rakshit, “Studies of the Effect of Additives on the Surface and Thermodynamic Properties of Poly(oxyethylene(10)) Lauryl Ether in Aqueous Solution,” Langmuir, Vol. 13, No. 17, 1997, pp. 4562-4568. doi:10.1021/la960527i
[34] P. L. Nostro and G. Gabrielli, “Temperature and Subphase Effects on Aliphatic Alcohol Films at the Air-Water Interface,” Langmuir, Vol 9, No. 11, 1993, pp. 3132-3137. doi:10.1021/la00035a063
[35] S. S. Soni, N .V. Sastry, A. K. Patra, J. V. Joshi and P. S. Goyal, “Surface Activity, SANS, and Viscosity Studies in Aqueous Solutions of Oxyethylene and Oxybutylene Di- and Triblock Copolymers,” The Journal of Physical Chemistry B, Vol. 106, No. 50, 2002, pp. 13069-13077. doi:10.1021/jp026277y
[36] S. S. Soni, N. V. Sastry, V. K. Aswal and P. S. Goyal, “Micellar Structure of Silicone Surfac-tants in Water from Surface Activity, SANS and Viscosity Stu-dies,” The Journal of Physical Chemistry B, Vol. 106, No. 10, 2002, pp. 2606-2617. doi:10.1021/jp0129434
[37] M. J. Rosen, A. W Cohen, M. Dahanayeke and X.-Y. Hua, “Relationship of Structure to Properties in Surfactants. 10. Surface and Ther-modynamic Properties of 2-Dodecy- loxypoly(ethenoxyethanol)s, C12H25(OC2H4)xOH, in Aqueous Solution,” The Journal of Physical Chemistry, Vol. 86, 1982, pp. 541-545. doi:10.1021/j100393a025
[38] D. G. Hall, “Nonionic Surfactants Physical Chemistry,” In: M. J. Schick, Ed., Marcel Dekker, New York, 1987, pp. 23-247.
[39] Z. Zhou and B. Chu, “Phase Behavior and Association Properties of Poly(oxypropylene)-Poly (oxyethy1ene)- Poly (oxyprop ylene) Triblock Copolymer in Aqueous Solution,” Macromolecules, Vol. 27, 1994, pp. 2025- 2033. doi:10.1021/ma00086a008
[40] M. A. Abed, A. Saxena and H. B. Bohidar, “Micellization of Alpha-Olefin Sulfonate in Aqueous Solutions Studied by Turbidity, Dynamic Light Scat-tering and Viscosity Measurements,” Colloids and Surfaces A: Physiochemical and Engineering Aspects, Vol. 233, No. 1-3, 2004, pp. 181-187. doi:10.1016/j.colsurfa.2003.11.016
[41] A. Khan, G. F. Durrani, M. Usman, W. Harrison and M. Siddiq, “Effect of the Hydrophilic Block Length on the Micellar Prop-erties of Oxyethylene-Oxybutylene Diblock Copolymers in Aqueous Solution: Density and Viscosity Studies,” Journal of the Chemical Society of Pakistan, Vol. 31, 2009, pp. 731-737. doi:10.1002/pol.1955.120178317
[42] O. E. Ohrn, “Preliminary Report on the Influence of Adsorption on Capillary Dimensions of Viscometers,” Journal of Polymer Science, Vol. 17, No. 83, 1955, pp. 137-140.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.