Gallic Acid-loaded Cellulose Acetate Electrospun Nanofibers: Thermal Properties, Mechanical Properties, and Drug Release Behavior

DOI: 10.4236/ojpchem.2012.21004   PDF   HTML     3,985 Downloads   9,354 Views   Citations


The gallic acid-loaded electrospun cellulose acetate fibers were successfully prepared. The fiber containing 2.5% gallic acid was smooth surface but observed drug flake on the surface of the fiber when increasing drug content. The thermal properties, mechanical properties and drug release behavior of the fibers were investigated comparing to the corres-ponding films.

Share and Cite:

M. Phiriyawirut and T. Phaechamud, "Gallic Acid-loaded Cellulose Acetate Electrospun Nanofibers: Thermal Properties, Mechanical Properties, and Drug Release Behavior," Open Journal of Polymer Chemistry, Vol. 2 No. 1, 2012, pp. 21-29. doi: 10.4236/ojpchem.2012.21004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Suh, J. E. Spruiell and S. A. Schwartz, “Melt Spinning and Drawing of 2-Methyl-1, 3-Propanediol-Substituted Poly(Ethylene Terephthalate),” Journal of Applied Polymer Science, Vol. 88, No. 11, 2003, pp. 2598-2606. doi:10.1002/app.11871
[2] P. J. Barham and A. Keller, “High-Strength Polyethylene Fibers from Solution and Gel Spinning,” Journal of Materials Science, Vol. 20, No. 7, 1985, pp. 2281-2302. doi:10.1007/BF00556059
[3] D. H. Reneker and I. Chun, “Nanometre Diameter Fibres of Polymer, Produced by Electrospinning,” Nanotechnology, Vol. 7, No. 3, 1996, pp. 216-223. doi:10.1088/0957-4484/7/3/009
[4] J. Doshi and D. H. Reneker, “Electrospinning Process and Applications of Electrospun Fibers,” Journal of Electrostatic, Vol. 35, No. 2-3, 1995, pp. 151-60. doi:10.1016/0304-3886(95)00041-8
[5] J. M. Deitzel, J. Kleinmeyer, D. Harris and N. C. B. Tan, “Electrospinning of Polymer Nanofibers with Specific Surface Chemistry,” Polymer, Vol. 42, No. 1, 2001, pp. 261-272. doi:10.1016/S0032-3861(00)00250-0
[6] D. Li, Y. Wang and Y. Xia, “Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays,” Nano Letters, Vol. 3, No. 8, 2003, pp. 1167-1171. doi:10.1021/nl0344256
[7] H.-J. Jin, J. Chen, V. Karageorgious, G. H. Altman and D. L Kaplan, “Human Bone Marrow Stromal Cell Responses on Electrospun Silk Fibroin Mats,” Biomaterials, Vol. 25, No. 6, 2004, pp. 1039-1047. doi:10.1016/S0142-9612(03)00609-4
[8] X. Wang, Y. Kim, C. Drew, B. Ku, J. Kuma and L. A. Samuelson, “Electrostatic Assembly of Conjugated Polymer Thin Layers on Electrospun Nanofibrous Membranes for Biosensors,” Nano Letters, Vol. 4, No. 2, 2004, pp. 331-334. doi:10.1021/nl034885z
[9] P. Gibson, H. Schreuder-Gibson and D. Rivin, “Transport Properties of Porous Membranes Based on Electrospun Nanofibers,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 187-188, 2001, pp. 469481. doi:10.1016/S0927-7757(01)00616-1
[10] M. Wang, H. Singh, T. A. Hatton and G. C. Rutledge, “Field-Responsive Superparamagnetic Composite Nanofibers by Electrospinning,” Polymer, Vol. 45, No. 16, 2004, pp. 5505-5514. doi:10.1016/j.polymer.2004.06.013
[11] M. L. Ma, R. M. Hill, J. L. Lowery, S. V. Fridrikh and G. C. Rutledge, “Electrospun Poly(Styrene-Block-Dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity,” Langmuir, Vol. 21, No. 12, 2005, pp. 5549-5554. doi:10.1021/la047064y
[12] P. Taepaiboon, U. Rungsardthong and P. Supaphol, “Vitamin-Loaded Electrospun Cellulose Acetate Nanofiber mats as Transdermal and Dermal Therapeutic Agents of Vitamin a Acid and Vitamin E,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 67, No. 2, 2007, pp. 387-397. doi:10.1016/j.ejpb.2007.03.018
[13] H. Liu and Y. L. Hsieh, “Ultrafine Fibrous Cellulose Membranes from Electrospinning of Cellulose Acetate,” Journal of Polymer Science Part B: Polymer Physics, Vol. 40, No. 18, 2002, pp. 2119-2129. doi:10.1002/polb.10261
[14] S. Tungprapa, I. Jangchud and P. Supaphol, “Release Characteristics of Four Model Drugs-Loaded Electrospun Cellulose Acetate Fiber Mats,” Polymer, Vol. 48, No. 17, 2007, pp. 5030-5041. doi:10.1016/j.polymer.2007.06.061
[15] O. Suwantong, P. Opanasopit, U. Ruktanonchai and P. Supaphol, “Electrospun Cellulose Acetate Fiber Mats Containing Curcumin and Release Characteristic of the Herbal Substance,” Polymer, Vol. 48, No. 26, 2007, pp. 7546-7557. doi:10.1016/j.polymer.2007.11.019
[16] R. Krogh, R. A. Yunes and A. D. Andricopulo, “Structure-Activity Relationships for the Analgesic Activity of Gallic Acid Derivatives,” II Farmaco, Vol. 55, No. 11-12, 2000, pp. 730-735. doi:10.1016/S0014-827X(00)00094-X
[17] L. Zhongbing, N. Guangjun, P. S. Belton, H. Tang and B. Zhao, “Structure-Activity Relationship Analysis of Antioxidant Ability and Neuroprotective Effect of Gallic Acid Derivatives,” Neurochemistry International, Vol. 48, No. 4, 2006, pp. 263-274. doi:10.1016/j.neuint.2005.10.010
[18] S. Shahrzad, K. Aoyagi, A. Winter, A. Koyama and I. Bitsch, “Pharmacokinetics of Gallic Acid and Its Relative Bioavailability from Tea in Healthy Humans,” Journal of Nutrition, Vol. 131, No. 4, 2001, pp. 1207-1210.
[19] T. Sawa, M. Nakao, T. Akaike, K. Ono and H. Maeda, “Alkylperoxyl Radical-Scavenging Activity of Various Flavonoids and Other Phenolic Compounds: Implications for the Anti-Tumor-Promoter Effect of Vegetables,” Journal of Agricultural and Food Chemistry, Vol. 47, No. 2, 1999, pp. 397-402. doi:10.1021/jf980765e
[20] V. M. J. Rodrguez, M. R. Alberto and M. M. C. de Nadra, “Antibacterial Effect of Phenolic Compounds from Different Wines,” Food Control, Vol. 18, No. 2, 2007, pp. 93-101. doi:10.1016/j.foodcont.2005.08.010
[21] M. J. O’Neil, A. Smith, P. E. Heckelman, J. R. Obenchain, J. A. R. Gallipeau and M. A. D’Arecca, “Gallic Acid,” In: M. J. O’Neil, A. Smith, P. E. Heckelman, J. R. Obenchain, J. A. R. Gallipeau and M. A. D’Arecca, Eds., The Merck index,13th Edition, Merck Research Laboratories, New Jersey, 2001, p. 261.
[22] C. M. Hansen and L. Just, “Prediction of Environmental Stress Cracking in Plastics with Hansen Solubility Parameters,” Industrial & Engineering Chemistry Research, Vol. 40, No. 1, 2001, pp. 21-25. doi:10.1021/ie9904955
[23] P. Taepaiboon, U. Rungsardthong and P. Supaphol, “DrugLoaded Electrospun Mats of Poly(Vinyl Alcohol) Fibres and Their Release Characteristics of Four Model Drugs,” Nanotechnology, Vol. 17, No. 9, 2006, pp. 2317-2329. doi:10.1088/0957-4484/17/9/041
[24] C. Mit-Uppatham, M. Nithitanakul and P. Supaphol, “Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter,” Macromolecular Chemistry and Physics, Vol. 205, No. 17, 2004, pp. 2327-2338. doi:10.1002/macp.200400225
[25] C. Mit-uppatham, M. Nithitanakul and P. Supaphol, “Effects of Solution Concentration, Emitting Electrode Polarity, Solvent Type, and Salt Addition on Electrospun Polyamide-6 Fibers: A Preliminary Report,” Macromolecular Symposia, Vol. 216, No. 1, 2004, pp. 293-299. doi:10.1002/masy.200451227
[26] Z. Q. Liu, A. M. Cunha, X. S. Yi and C. A. Bernardo, “Thermal characterizations of wood flour/starch cellulose acetate compounds,” Journal of Macromolecular Science Part B Physics, Vol. 40, No. 3-4, 2001, pp. 529-538. doi:10.1081/MB-100106175
[27] D. S. Rosa, C. G. F. Guedes, F. Casarin and F. C. Bragan?a, “The Effect of the Mw of PEG in PCL/CA Blends,” Polymer Testing, Vol. 24, No. 5, 2005, pp. 542-548. doi:10.1016/j.polymertesting.2005.02.002

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.