Homocysteine in pregnancies complicated by preeclampsia with and without IUGR: a comparison with normotensive pregnant women with isolated IUGR and healthy pregnant women
Marzena Laskowska, Jan Oleszczuk
DOI: 10.4236/ojog.2011.14037   PDF   HTML     5,652 Downloads   9,333 Views   Citations


Objective: The aim of this study was to analyze homocysteine levels in maternal serum in women with pregnancies complicated by preeclampsia and/or IUGR. Patients and methods: The study was carried out on 49 pregnant patients with normotensive pregnancies complicated by intrauterine fetal growth restriction (group IUGR), 31 patients with preeclampsia complicated by IUGR (group PRE-IUGR), and 35 preeclamptic patients with appropriate-for-gestational-age weight fetuses (group PRE). The control group consisted of 47 healthy normotensive pregnant patients with singleton uncomplicated pregnancies and with proper intrauterine fetal growth. Results: We revealed higher levels of maternal serum homocysteine in the group of pregnant patients with isolated fetal intrauterine growth restriction in comparison with the control subjects. The concentrations of homocysteine were also higher in both groups of patients with pregnancy complicated by preeclampsia with and without IUGR. The highest levels of homocysteine were observed in preeclamptic women with appropriate-for-gestational-age fetal growth. The mean values were 9.004 +/– 2.820 umol/L in the IUGR group, 10.815 +/– 3.785 umol/ L in the group PRE, 9.808 +/– 2.543 umol/L in the group PRE-IUGR and 7.639 +/– 2.728 umol/L in the control group. Conclusions: Increased levels of homocysteine are involved in pathogenesis IUGR and preeclampsia and may contribute to endothelial cells activation or dysfunction observed in these pregnancy disorders. Further studies are needed to explain these aspects in order to improve the management and therapeutic strategies for pregnancies complicated by IUGR and/or preeclampsia.

Share and Cite:

Laskowska, M. and Oleszczuk, J. (2011) Homocysteine in pregnancies complicated by preeclampsia with and without IUGR: a comparison with normotensive pregnant women with isolated IUGR and healthy pregnant women. Open Journal of Obstetrics and Gynecology, 1, 191-196. doi: 10.4236/ojog.2011.14037.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Mandruzzato, G., Antsaklis, A., Botet, F., Chervenak, F.A., Figueras, F., Grunebaum, A., Puerto, B., Skupski, D. and Stanojevic, M. (2008) Intrauterine restriction (IUGR). Journal of Perinatal Medicine, 36, 277-281. doi:10.1515/JPM.2008.050
[2] Maynard, S.E., Min, J.Y., Merchan, J., Lim, K.H., Li, J., Mondal, S., Libermann, T.A., Morgan, J.P., Selke, F.W., Stillman, I.E., Epstein, F.H., Sukhatme, V.P.M. and Karumanchi, S.A. (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. Journal of Clinical Investigation, 111, 600-602.
[3] Marsal, K. (2002) Intrauterine growth restriction. Current Opinion in Obstetrics and Gynecology, 14,127-135. doi:10.1097/00001703-200204000-00005
[4] Robinson, J.S. and Owens, J.A. (1996) Pathophysiology of intrauterine growth failure. In: Gluckman, P.D. and Heymann, M.A., Eds., Pediatrics and Perinatology: The Scientific Basis, Arnold, London, 290-297.
[5] Bretelle, F., Sabatier, F., Blann, A., D’Ercole, Boutiere, B., Mutin, M., Boubli, L., Sampol, J. and Dignat-George, F. (2001) Maternal endothelial soluble cell adhesion molecules with isolated small for gestational age fetuses, comparison with preeclampsia. British Journal of Obstetrics Gynaecology, 108, 1277-1282. doi:10.1016/S0306-5456(01)00259-5
[6] Bamberger, A.M., Schulte, H.M., Thuneke, I., Erdmann, I., Bamberger, ChM. and Asa, S.L. (1997) Expression of the apoptosis-inducing fas ligand (FasL) in human first and third trimester placenta and choriocarcinoma cells. Journal of Clinical Endocrinology & Metabolism, 82, 3173-3175. doi:10.1210/jc.82.9.3173
[7] Hsu, ChD., hariah, H., Basherra, H. and Mor, A.G. (2001) Serum soluble fas levels in preeclampsia. Obstetrics and Gynecology, 97, 530-532. doi:10.1016/S0029-7844(00)01227-8
[8] Roberts, J.M. (1999) Objective evidence of endothelial dysfunction in preeclampsia. American Journal of Kidney Diseases, 33, 992-997. doi:10.1016/S0272-6386(99)70439-7
[9] Granger, J.P., Alexander, B.T., Llinas, M.T., Bennett, W.A. and Khalil, R.A. (2001) Pathophysiology of hypertension during preeclampsia linking placental ischemia with endothelial dysfunction. Hypertension, 38, 718-722.
[10] Kassab, S., Abu-Hijleh, M.F., Al-Shaikh, H.B. and Nagalla, D.S. (2005) Hyperhomocysteinemia in pregnant rats: Effects on arterial pressure, kidneys and fetal growth. European Journal of Obstetrics & Gynecology and Reproductive, 122, 177-181. doi:10.1016/j.ejogrb.2005.02.008
[11] Aubard, Y., Darodes, N. and Cantaloube, M. (2000) Hyperhomocysteinemia and pregnancy—review of our present understanding and therapeutic implications. European Journal of Obstetrics & Gynecology and Reproductive, 93, 57-165.
[12] Onalan, R., Onalan, G., Gunenc, Z. and Karabulut, E. (2006) Combining 2nd trimester maternal serum homocysteine levels and uterine artery doppler for prediction of preeclampsia and isolated intrauterine growth restriction. Gynecology and Obstetrics Investigaton, 61, 142- 148. doi:10.1159/000090432
[13] Weir, D.G. and Scott, J.M. (1998) Homocysteine as a risk factor for cardiovascular and related disease: Nutritional implications. Nutrition Research Reviews, 11, 311-338. doi:10.1079/NRR19980020
[14] López-Quesada, E., Also-Razo, E. and Vilaseca, M.A. (2003) Hyperhomocysteinemia during pregnancy as a risk factor of preeclampsia. Clinical Medicine, 121, 350-355.
[15] Wang, J., Trudinger, B.J., Duarte, N., Wilcken, D.E. and Wang, X.L. (2000) Elevated circulating homocysteine levels in placental vascular disease and associated pre-eclampsia. British Journal of Obstetrics and Gynaecology, 107, 935-938. doi:10.1111/j.1471-0528.2000.tb11095.x
[16] Mao, D., Che, J., Li, K., Han, S., Yue, Q., Zhu, L., Zhang, W. and Li, L. (2009) Association of homocysteine, asymmetric dimethylarginine, and nitric oxide with preeclampsia. Archives of Gynecology and Obstetrics, 1234-1236.
[17] De Falco, M., Pollio, F., Scaramelino, M., Portillo, M. and Lieto, A.D. (2000) Homocysteinemia during pregnancy and placental disease. Clinical & Experimental Obstetrics & Gynecology, 27, 188-190.
[18] Steegers-Theunissen, R.P., Van Iersel, C.A., Peer, P.G., Nelen, W.L. and Steegers, E.A. (2004) Hyperhomocysteinemia, pregnancy complications, and the timing of investigation. Obstetrics and Gynecology, 104, 336-343. doi:10.1097/01.AOG.0000129955.47943.2a
[19] Lindblad, B., Zaman, S., Malik, A., Martin, H., Ekstr?m, A.M., Amu, S., Holmgren, A. and Norman, M. (2005) Folate, vitamin B12 and homocysteine levels in South Asian women with growth-retarded fetuses. Acta Obstetricia et Gynecologica Scandinavica, 84, 1055-1061.
[20] Infante-Rivard, C., Rivard, G.E., Gauthier, R. and Théoret, Y. (2003) Unexpected relationship between pla- sma homocysteine and intrauterine growth restriction. Clinical Chemistry, 49, 1476-1482. doi:10.1373/49.9.1476
[21] Hogg, ChD., Harirah, H., Basherra, H. and Mor, A.G. (2001) Serum soluble fas levels in preeclampsia. Obstetrics and Gynecology, 97, 530-532. doi:10.1016/S0029-7844(00)01227-8
[22] D’Anna, R., Bariera, G., Corrido, F., Lentile, R., Granese, D. and Stella, N.C. (2004) Plasma homocysteine in early and late pregnancies complicated with preeclampsia and isolated intrauterine growth restriction. Acta Obstetricia et Gynecologica Scandinavica, 83, 155-158.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.