Modern Mechanical Engineering

Volume 7, Issue 1 (February 2017)

ISSN Print: 2164-0165   ISSN Online: 2164-0181

Google-based Impact Factor: 1.21  Citations  

Coherent Application of a Contact Structure to Formulate Classical Non-Equilibrium Thermodynamics

HTML  XML Download Download as PDF (Size: 638KB)  PP. 8-26  
DOI: 10.4236/mme.2017.71002    1,923 Downloads   3,500 Views  Citations

ABSTRACT

This contribution presents an outline of a new mathematical formulation for Classical Non-Equilibrium Thermodynamics (CNET) based on a contact structure in differential geometry. First a non-equilibrium state space is introduced as the third key element besides the first and second law of thermodynamics. This state space provides the mathematical structure to generalize the Gibbs fundamental relation to non-equilibrium thermodynamics. A unique formulation for the second law of thermodynamics is postulated and it showed how the complying concept for non-equilibrium entropy is retrieved. The foundation of this formulation is a physical quantity, which is in non-equilibrium thermodynamics nowhere equal to zero. This is another perspective compared to the inequality, which is used in most other formulations in the literature. Based on this mathematical framework, it is proven that the thermodynamic potential is defined by the Gibbs free energy. The set of conjugated coordinates in the mathematical structure for the Gibbs fundamental relation will be identified for single component, closed systems. Only in the final section of this contribution will the equilibrium constraint be introduced and applied to obtain some familiar formulations for classical (equilibrium) thermodynamics.

Share and Cite:

Knobbe, E. and Roekaerts, D. (2017) Coherent Application of a Contact Structure to Formulate Classical Non-Equilibrium Thermodynamics. Modern Mechanical Engineering, 7, 8-26. doi: 10.4236/mme.2017.71002.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.