International Journal of Astronomy and Astrophysics

Volume 5, Issue 4 (December 2015)

ISSN Print: 2161-4717   ISSN Online: 2161-4725

Google-based Impact Factor: 0.78  Citations  h5-index & Ranking

Calculations for Density of Quark Core Consisting of Mono Flavored Closely Packed Quarks inside Neutron Star

HTML  XML Download Download as PDF (Size: 506KB)  PP. 258-266  
DOI: 10.4236/ijaa.2015.54029    5,316 Downloads   7,155 Views  

ABSTRACT

The attempt has been taken to calculate the density of stars possessing quark matter core using sphere packing concept of crystallography. The quark matter has been taken as solid in nature as predicted in references 36 and 37, and due to immense gravitational pressure at the core of the star the densest packing of quarks as spheres has been assumed to calculate the packing fraction Φ, thus the density ρ of the matter. Three possible types of pickings—mono-sized sphere packing, binary sphere packing and ternary sphere packing, have been worked out using three possible types of quark matter. It has been concluded that no value about the ρ of quark matter can be calculated using binary and ternary packing conditions and for mono-sized packing condition different flavor quark matters of different values in the density have been calculated using results from the experiments done by HI, ZEUS, L3 and CDF Collaborations about the radius limit of quark. For example, for u quark matter ρ ranges from 4.0587 × 1048 - 7.40038 × 1048 MeV/c2 cm3 using results of L3 Collaboration, for s quark matter 15.91794 × 1048 - 17.6866 × 1048 MeV/c2 cm3, etc.

Share and Cite:

Dar, J. , Singh, P. and Swaroop, R. (2015) Calculations for Density of Quark Core Consisting of Mono Flavored Closely Packed Quarks inside Neutron Star. International Journal of Astronomy and Astrophysics, 5, 258-266. doi: 10.4236/ijaa.2015.54029.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.