Biography

Prof. Kumar K. Tamma

Dept. of Mech. Engr.

University of Minnesota, USA

Professor


E-mail: ktamma@tc.umn.edu


Qualifications

1982 Ph.D., Engineering Mechanics, Old Dominion University, Norfolk, Virginia

1978 M.Sc., Mechanical Engineering, Old Dominion University, Norfolk, Virginia

1974 B.Sc., Mechanical Engineering, Andhra University, Waltair, India


Publications (Selected)

  1. Wang, Y., Maxam, D., Adams, N. et al. (2025) Multiple Time-Weighted Residual Methodology for Design and Synthesis of Time Integration Algorithms. Arch Computat Methods Eng. https://doi.org/10.1007/s11831-025-10262-3
  2. Wang, Yazhou & Tamma, Kumar & Maxam, Dean & Xue, Tao. (2025). On a holistic investigation of implicit/explicit/semi-implicit GS4-I framework and time step control for unsteady fluid dynamics. International Journal of Numerical Methods for Heat & Fluid Flow. 35. 10.1108/HFF-07-2024-0547. 
  3. Wang, Yazhou & Adams, Nikolaus & Tamma, Kumar. (2025). A Generalized Single‐Step Multi‐Stage Time Integration Formulation and Novel Designs With Improved Stability and Accuracy. International Journal for Numerical Methods in Engineering. 126. 10.1002/nme.7658. 
  4. Wang, Yazhou & Maxam, Dean & Adams, Nikolaus & Tamma, Kumar. (2025). On the novel zero-order overshooting LMS algorithms by design for computational dynamics. Computer Methods in Applied Mechanics and Engineering. 433. 117522. 10.1016/j.cma.2024.117522. 
  5. Wang, Yazhou & Xue, Xiaodai & Tamma, Kumar & Adams, Nikolaus. (2024). Algebraically stable SDIRK methods with controllable numerical dissipation for first/second-order time-dependent problems. Journal of Computational Physics. 508. 113032. 10.1016/j.jcp.2024.113032. 
  6. Tae, David & Tamma, Kumar. (2024). A robust and generalized effective DAE framework encompassing different methods, algorithms, and model order reduction for linear and nonlinear second order dynamical systems. Finite Elements in Analysis and Design. 228. 104043. 10.1016/j.finel.2023.104043. 
  7. Kikon, D. & Tamma, K. (2024). Laughter and Fieldwork in Nagaland: A Dialogue. ACME, 23(3), 247–259. https://doi.org/10.14288/acme.v23i3.2319
  8. Wang, Y., Xue, X., Wang, T. et al. (2024) The generalization of diagonally implicit Runge–Kutta–Nyström method with controllable numerical dissipation for structural dynamics. Nonlinear Dyn 112, 525–559. https://doi.org/10.1007/s11071-023-09065-7
  9. Wang, Yazhou & Luo, Dehong & Xuelin, Zhang & Wang, Zhitao & Chen, Hui & Zhang, Xiaobo & Xie, Ningning & Mei, Shengwei & Xue, Xiaodai & Zhang, Tong & Tamma, Kumar. (2023). Toward a simple and accurate Lagrangian-based error estimator for the BDF algorithms and adaptive time-stepping. International Journal of Numerical Methods for Heat & Fluid Flow. 33. 10.1108/HFF-03-2023-0161. 
  10. Tae, David & Tamma, Kumar. (2023). Modeling/simulation of transient linear heat conduction problems via integrating a wide variety of space/time methods and choices. Numerical Heat Transfer, Part B: Fundamentals. 84. 1-21. 10.1080/10407790.2023.2207734. 
  11. Wang, Y., Xue, X., Zhang, T. et al. (2023). Overview and Novel Insights into Implicit/Explicit Composite Time Integration Type Methods—Fall Under the RK: No Ifs, Ands, or Buts. Arch Computat Methods Eng 30, 3891–3940. https://doi.org/10.1007/s11831-023-09924-x
  12. Tae, D. and Tamma, K.K. (2023). An integrated enabling technology interfacing multiple space/time methods/algorithms/domains with model reduction for first-order systems. International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 33 No. 7, pp. 2409-2438. https://doi.org/10.1108/HFF-11-2022-0667
  13. Tae, D. and Tamma, K.K. (2023). A novel space/time integration technology via altogether different space and time stepping methods for nonlinear first-order systems. International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 33 No. 3, pp. 998-1021. https://doi.org/10.1108/HFF-06-2022-0382
  14. Tae, D., and Tamma, K. K. (2022). Computational Differential Algebraic Equation Framework and Multi Spatial and Time Discretizations Preserving Consistent Second-Order Accuracy: Nonlinear Dynamics. ASME. J. Appl. Mech. January 2023; 90(1): 011006. https://doi.org/10.1115/1.4055955
  15. Nimish Subramaniam, Krishnapriya Tamma, Divya Uma. (2023). An arachnid’s guide to being an ant: morphological and behavioral mimicry in ant-mimicking spiders, Behavioral Ecology, Volume 34, Issue 1, January/February 2023, Pages 99–107, https://doi.org/10.1093/beheco/arac104
  16. Wang, Y., Xie, N., Yin, L., Zhang, T., Zhang, X., Mei, S., Xue, X. and Tamma, K. (2022). On the application of the GS4-1 framework for fluid dynamics and adaptive time-stepping via a universal A-posteriori error estimator. International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 32 No. 10, pp. 3306-3327. https://doi.org/10.1108/HFF-11-2021-0738
  17. Maxam DJ, Tamma KK. (2022). A re-evaluation of overshooting in time integration schemes: The neglected effect of physical damping in the starting procedure. Int J Numer Methods Eng. 123(12): 2683–2704. doi:10.1002/nme.6955
  18. Maxam DJ, Tamma KK. (2022). Load aliasing—A new additional test concept for effective control of nonhomogeneous high-frequency behavior in linear multistep methods. Int J Numer Methods Eng. 123(12): 2705–2737. doi:10.1002/nme.6956
  19. Sarania Bidyut, Guttal Vishwesha and Tamma Krishnapriya. (2022). The absence of alternative stable states in vegetation cover of northeastern IndiaR. Soc. Open Sci.9211778. http://doi.org/10.1098/rsos.211778
  20. Wang, Y., Qin, G., Tamma, K. K., Maxam, D., & Tae, D. (2021). Numerical investigations on model order reduction to SEM based on POD-DEIM to linear/nonlinear heat transfer problems. Numerical Heat Transfer, Part B: Fundamentals, 80(3–4), 39–52. https://doi.org/10.1080/10407790.2021.1939609


Profile Details

https://cse.umn.edu/me/kumar-tamma

Free SCIRP Newsletters
Copyright © 2006-2025 Scientific Research Publishing Inc. All Rights Reserved.
Top