Brucella spp. Lumazine synthase as a novel immunomodulator to produce egg yolk antibodies

Abstract

Lumazine synthase from Brucella spp. (BLS) is a highly immunogenic decameric protein. It has been previously described as a carrier of peptides or proteins to increase their immunogenicity in different animal species, but its activity has never been evaluated in chickens. In this work, the use of BLS to improve the antibody response against bovine rotavirus (BRV) VP8d protein in laying hens was assessed. VP8d is the inner domain of the VP8 spike protein which preserves the sialic acid binding activity and the neutralizing epitopes present in the viral protein. Hens were immunized three times with 2 μg of VP8d alone or fused to BLS. Hens inoculated with BLSVP8d developed higher antibody titers (evaluated by ELISA and viral neutralization test) than hens immunized either with VP8d alone or the mixture of VP8d and BLS. Furthermore, IgY antibodies against BLSVP8d were able to fully protect mice against challenge with virulent BRV in a dose-depent-manner. Overall, these results demonstrate that BLS is a potent immonumodulator that enhances the antibody response in hens, thus increasing the concentration of specific IgY in the egg yolk, one of the main issues to be adressed in order to improve the use of the IgY technology.

Share and Cite:

Bellido, D. , Chacana, P. , Mozgovoj, M. , Gonzalez, D. , Goldbaum, F. , Wigdorovitz, A. and Santos, M. (2012) Brucella spp. Lumazine synthase as a novel immunomodulator to produce egg yolk antibodies. Advances in Bioscience and Biotechnology, 3, 80-86. doi: 10.4236/abb.2012.31012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Carlander, D., Kollberg, H., Wejaker, P.E. and Larsson, A. (2000) Peroral immunotherapy with yolk antibodies for the prevention and treatment of enteric infections. Immunologic Research, 21, 1-6. doi:10.1385/IR:21:1:1
[2] Reilly, R.M., Domingo, R. and Sandhu, J. (1997) Oral delivery of antibodies. Future pharmacokinetic trends. Clinical Pharmacokinetics, 32, 313-323. doi:10.2165/00003088-199732040-00004
[3] Svendsen, L., Crowley, A., Ostergaard, L.H., Stodulski, G. and Hau, J. (1995) Development and comparison of purification strategies for chicken antibodies from egg yolk. Laboratory Animal Science, 45, 89-93.
[4] Schade, R., Calzado, E.G., Sarmiento, R., Chacana, P.A., Porankiewicz-Asplund, J. and Terzolo, H.R. (2005) Chicken egg yolk antibodies (IgY-technology): A review of progress in production and use in research and human and veterinary medicine. Altern Lab Anim, 33, 129-154.
[5] Schade R.C.P. (2011) Egg yolk compounds-Livetin fractions. In: Huopalahti, R., Anton, R.L.-F. M. and Schade, R., Eds., Bioactive Egg Compounds, Springer, Berlin, 298.
[6] Schade, R.H.P. and Hlnak, A. (1997) Animal alternatives, welfare and ethics. Elsevier Science Pub Co., New York.
[7] Akita, E.M. and Nakai, S. (1993) Comparison of four purification methods for the production of immunoglobulins from eggs laid by hens immunized with an enterotoxigenic E. coli strain. Journal of immunological methods, 160, 207-214. doi:10.1016/0022-1759(93)90179-B
[8] Camenisch, G., Tini, M., Chilov, D., Kvietikova, I., Srinivas, V., Caro, J., Spielmann, P., Wenger, R.H. and Gassmann, M. (1999) General applicability of chicken egg yolk antibodies: The performance of IgY immunoglobulins raised against the hypoxia-inducible factor 1alpha. FASEB Journal, 13, 81-88.
[9] Ikemori, Y., Kuroki, M., Peralta, R.C., Yokoyama, H. and Kodama, Y. (1992) Protection of neonatal calves against fatal enteric colibacillosis by administration of egg yolk powder from hens immunized with K99-piliated enterotoxigenic Escherichia coli. American journal of veterinary research, 53, 2005-2008.
[10] Yokoyama, H., Umeda, K., Peralta, R.C., Hashi, T., Icatlo, F.C.Jr., Kuroki, M., Ikemori, Y. and Kodama, Y. (1998) Oral passive immunization against experimental salmonellosis in mice using chicken egg yolk antibodies specific for Salmonella enteritidis and S. typhimurium. Vaccine, 16, 388-393. doi:10.1016/S0264-410X(97)80916-4
[11] Lee, E.N., Sunwoo, H.H., Menninen, K. and Sim, J.S. (2002) In vitro studies of chicken egg yolk antibody (IgY) against Salmonella enteritidis and Salmonella typhimurium. Poultry Science, 81, 632-641.
[12] Kuroki, M., Ohta, M., Ikemori, Y., Peralta, R.C., Yokoyama, H. and Kodama, Y. (1994) Passive protection against bovine rotavirus in calves by specific immunoglobulins from chicken egg yolk. Archives of Virology, 138, 143-148. doi:10.1007/BF01310045
[13] Sarker, S.A., Pant, N., Juneja, L.R. and Hammarstrom, L. (2007) Successful treatment of rotavirus-induced diarrhoea in suckling mice with egg yolk immunoglobulin. Journal of Health, Population, and Nutrition, 25, 465-468.
[14] Hatta, H., Tsuda, K., Akachi, S., Kim, M., Yamamoto, T. and Ebina, T. (1993) Oral passive immunization effect of anti-human rotavirus IgY and its behavior against proteolytic enzymes. Bioscience, Biotechnology, and Biochemistry, 57, 1077-1081. doi:10.1271/bbb.57.1077
[15] Kovacs-Nolan, J., Sasaki, E., Yoo, D. and Mine, Y. (2001) Cloning and expression of human rotavirus spike protein, VP8*, in Escherichia coli. Biochemical and Biophysical Research Communications, 282, 1183-1188. doi:10.1006/bbrc.2001.4717
[16] Larsson, A.C.D. and Wilhelmssonb, M. (1998) Antibody response in laying hens with small amounts of antigen. Food and Agricultural Immunology, 10, 29-36. doi:10.1080/09540109809354966
[17] Liou, J.F., Chang, C.W., Tailiu, J.J., Yu, C.K., Lei, H.Y., Chen, L.R. and Tai, C. (2010) Passive protection effect of chicken egg yolk immunoglobulins on enterovirus 71 infected mice. Vaccine, 28, 8189-8196. doi:10.1016/j.vaccine.2010.09.089 PMid:20937321
[18] Lee, S.B., Mine, Y. and Stevenson, R.M. (2000) Effects of hen egg yolk immunoglobulin in passive protection of rainbow trout against Yersinia ruckeri. Journal of agricultural and food chemistry, 48, 110-115. doi:10.1021/jf9906073
[19] Zylberman, V., Craig, P.O., Klinke, S., Braden, B.C., Cauerhff, A. and Goldbaum, F.A. (2004) High order quaternary arrangement confers increased structural stability to Brucella sp. lumazine synthase. The Journal of biological chemistry, 279, 8093-8101. doi:10.1074/jbc.M312035200
[20] Craig, P.O., Berguer, P.M., Ainciart, N., Zylberman, V., Thomas, M.G., Martinez Tosar, L.J., Bulloj, A., Boccaccio, G.L. and Goldbaum, F.A. (2005) Multiple display of a protein domain on a bacterial polymeric scaffold. Proteins, 61, 1089-1100. doi:10.1002/prot.20635
[21] Rosas, G., Fragoso, G., Ainciart, N., Esquivel-Guadarrama, F., Santana, A., Bobes, R.J., Ramirez-Pliego, O., Toledo, A., Cruz-Revilla, C., Meneses, G., Berguer, P., Goldbaum, F.A. and Sciutto, E. (2006) Brucella spp. lumazine synthase: a novel adjuvant and antigen delivery system to effectively induce oral immunity. Microbes and Infection/Institut Pasteur, 8, 1277-1286.
[22] Bellido, D., Craig, P.O., Mozgovoj, M.V., Gonzalez, D.D., Wigdorovitz, A., Goldbaum, F.A. and Dus Santos, M.J. (2009) Brucella spp. lumazine synthase as a bovine rotavirus antigen delivery system. Vaccine, 27, 136-145. doi:10.1016/j.vaccine.2008.10.018
[23] Garaicoechea, L., Bok, K., Jones, L.R., Combessies, G., Odeon, A., Fernandez, F., Parreno, V. (2006) Molecular characterization of bovine rotavirus circulating in beef and dairy herds in Argentina during a 10-year period (1994-2003). Veterinary Microbiology, 118, 1-11. doi:10.1016/j.vetmic.2006.06.004
[24] Fernandez, F.M., Conner, M.E., Hodgins, D.C., Parwani, A.V., Nielsen, P.R., Crawford, S.E., Estes, M.K. and Saif, L.J. (1998) Passive immunity to bovine rotavirus in newborn calves fed colostrum supplements from cows immunized with recombinant SA11 rotavirus core-like particle (CLP) or virus-like particle (VLP) vaccines. Vaccine, 16, 507-516. doi:10.1016/S0264-410X(97)80004-7
[25] Saif, L.J., Redman, D.R., Smith, K.L. and Theil, K.W. (1983) Passive immunity to bovine rotavirus in newborn calves fed colostrum supplements from immunized or nonimmunized cows. Infection and Immunity, 41, 1118-1131.
[26] Saif, L.J., Weilnau, P., Miller, K. and Stitzlein, L. (1987) Isotypes of intestinal and systemic antibodies in colostrum-fed and colostrum-deprived calves challenged with rotavirus. Advances in Experimental Medicine and Biology, 216B, 1815-1823.
[27] Erhard, M.H., Gobel, E., Lewan, B., Losch, U. and Stangassinger, M. (1997) Systemic availability of bovine immunoglobulin G and chicken immunoglobulin Y after feeding colostrum and whole egg powder to newborn calves. Archiv fur Tierernahrung, 50, 369-380. doi:10.1080/17450399709386146
[28] Kuroki, M., Ikemori, Y., Yokoyama, H., Peralta, R.C., Icatlo, F.C.Jr. and Kodama, Y. (1993) Passive protection against bovine rotavirus-induced diarrhea in murine model by specific immunoglobulins from chicken egg yolk. Veterinary Microbiology, 37, 135-146. doi:10.1016/0378-1135(93)90188-D
[29] Kuroki, M., Ohta, M., Ikemori, Y., Icatlo, F.C.Jr., Kobayashi, C., Yokoyama, H. and Kodama, Y. (1997) Field evaluation of chicken egg yolk immunoglobulins specific for bovine rotavirus in neonatal calves. Archives of virology, 142, 843-851. doi:10.1007/s007050050123
[30] Sarker, S.A., Casswall, T.H., Juneja, L.R., Hoq, E., Hossain, I., Fuchs, G.J. and Hammarstrom, L. (2001) Randomized, placebo-controlled, clinical trial of hyperimmunized chicken egg yolk immunoglobulin in children with rotavirus diarrhea. Journal of Pediatric Gastroenterology and Nutrition, 32, 19-25. doi:10.1097/00005176-200101000-00009
[31] To, T.L., Ward, L.A., Yuan, L. and Saif, L.J. (1998) Serum and intestinal isotype antibody responses and correlates of protective immunity to human rotavirus in a gnotobiotic pig model of disease. The Journal of General Virology, 79, 2661-2672.
[32] Ijaz, M.K., Sabara, M.I., Frenchick, P.J. and Babiuk, L.A. (1987) Effect of different routes of immunization with bovine rotavirus on lactogenic antibody response in mice. Antiviral Research, 8, 283-297. doi:10.1016/S0166-3542(87)80006-2
[33] Lee, J., Babiuk, L.A., Harland, R., Gibbons, E., Elazhary, Y. and Yoo, D. (1995) Immunological response to recombinant VP8* subunit protein of bovine roravirus in pregnant cattle. The Journal of General Virology, 76, 2477-2483. doi:10.1099/0022-1317-76-10-2477
[34] Hendriksen, C. (2006) Replacement, reduction and refinement in the production and quality control of immunobiologicals. AATEX, 11, 155-161.
[35] Bachmann, M.F. and Zinkernagel, R.M. (1996) The influence of virus structure on antibody responses and virus serotype formation. Immunology Today, 17, 553-558. doi:10.1016/S0167-5699(96)10066-9
[36] Chackerian, B., Lenz, P., Lowy, D.R. and Schiller, J.T. (2002) Determinants of autoantibody induction by conjugated papillomavirus virus-like particles. Journal of Immunology, 169, 6120-6126.
[37] Berguer, P.M., Mundinano, J., Piazzon, I. and Goldbaum, F.A. (2006) A polymeric bacterial protein activates dendritic cells via TLR4. Journal of Immunology, 176, 2366-2372.
[38] Velikovsky, C.A., Goldbaum, F.A., Cassataro, J., Estein, S., Bowden, R.A., Bruno, L., Fossati, C.A. and Giambartolomei, G.H. (2003) Brucella lumazine synthase elicits a mixed Th1-Th2 immune response and reduces infection in mice challenged with Brucella abortus 544 independently of the adjuvant formulation used. Infection and Immunity, 71, 5750-5755. doi:10.1128/IAI.71.10.5750-5755.2003

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.