Journal of Power and Energy Engineering, 2014, 2, 361-367
Published Online April 2014 in SciRes. http://www.scirp.org/journal/jpee
http://dx.doi.org/10.4236/jpee.2014.24048
How to cite this paper: Gong, X., et al. (2014) Research on the Method of Calculating Node Injected Reactive Power Based
on L Indicator. Journal of Power and Energy Engineering, 2, 361-367. http://dx.doi.org/10.4236/jpee.2014.24048
Research on the Method of Calculating Node
Injected Reactive Power Based on
L Indicator
Xue Gong1, Bingcheng Zhang2, Bing Kong1, Anan Zhang1, Hongwei Li1, Wei Fang1
1School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu, China
2Baikouquan Oil Production Plant, Petro China Xinjiang Oilfield Company, Karamay, China
Email: gxsnowswpu@163.com, 1013215627@qq.com, kongbsc@163.com, ananzhang@swpu.edu.cn,
lhwmail@126.com, weifang@163.com
Received Sep te mber 2013
Abstract
With the power grid load increasing, the problem of grid voltage stability is increasingly promi-
nent, and the possibility of voltage instability is also growing. In order to improve the voltage sta-
bility, this paper an al yz ed how the voltage stability was influenced by different reactive power in-
jection based on the simplified L-indicator of on-line voltage stability monitoring. According to the
basic differential property of the simplified L-ind icator, a general and normative analytical algo-
rithm about reactive power optimization was deduced. The analytical algorithm can calculate the
load node injected reactive power, and then the network can run in the optimal steady state on the
basis of the calculat i on results. According to the simulation results of IEEE-14, IEEE-30, IEEE-57
and IEEE-118, the feasibility and effectiveness of the proposed algorithm to i m prov e voltage sta-
bility and reduce the risk of grid collapse were verified.
Keywords
Voltage St ability; L-Indic ator; Injected Reactive Power; Reactive Power Optimization; Fast
Calculation
1. Introduction
With the extending of power grids and the increasing of electricity demands, the challenge for voltage stability
is increasing. One of the challenges, the system voltage declining, can reduce the power grid transmission capacity
and increase the power losses as well, and this is not conducive to the electrical equipment operation. What’s worse,
it may also lead to system voltage collapse and even cause more serious accidents of the whole power grids [1] [2].
In order to ensure the safety of power grid operation and avoid voltage instability incidents, it is necessary to do
some research on how to monitor voltage stability on-line and improve voltage stability quickly [3]-[5].
Voltage stability evaluation indicator achieved by the voltage stability study is a significant progress, it is an
effective method to measure the system voltage stability as well as the basis for the implementation of the voltage
stability control [6]-[9]. The proposed L-indicator in article [10] [11], which can be used in on-line monitoring,
has attracted much attention for its accuracy, linearity, quickness, etc., and it has been applied in the actual pow-
X. Gong et al.
362
er grids. Considering that the value of reactance is far greater than that of resistance in actual power grids and
the bus voltage phase is small, the L-indicator has been simplified and an L-Q sensitivity analysis method has
been proposed in [12]. The L-Q sensitivity analysis method facilitates the quantitative analysis of voltage influ-
ence between different nodes. However, this method requires a large amount of computation, and its reaction
speed to solve voltage instability still needs to be improved.
Considering the above problems, this paper analyzed how the voltage stability was influenced by different
reactive power injection based on the simplified L-indicator of on-line voltage stability monitoring. According
to the basic differentia l property of the simplified L-indicator, a general and normative analytical algorithm
about reactive power optimization was deduced. The analytical algorithm can calculate the load node reactive
power injection volume, and then the network can run in the optimal steady state on the basis of the calculation
results. It can ensure the safety of power grid operation and avoid voltage instability incidents.
2. Simplified L-Indicator
Voltage stability local L-indicator was derived by kessel, etc. according to the simplest two nodes system. Ap-
plying the L-indicator into common multi-node systems needs dividing the nodes into two categories. One is
characterized by the behavior of the PQ-node which stands for a type consumer node and is defined as αL. The
other comprises the generator node which may be given by PV-node or by a slack node and is defined as αG. For
any load node j (j αL), the equation for local L-indicator (Lj) can be described as follows[10] [11]:
**
***
222
1
LL
ij iij i
corr ii
ii
ij ij
j jjj
jjj
jj jjj jjj j
ZS ZS
VV
S SSS
Lvv
Yv Yv Yv
αα
+∈∈
≠≠
+++
+
== =+=+
⋅⋅⋅
∑∑
(1)
where Sj is nodal power of load node j, Sjcorr is equivalent power which stems from other loads in the system.
Sjcorr is given by
*
L
ij i
corr
jii
ij
ZS
SV
α
=
(2)
In Equation (1),
jj
Y
+
is the node self-admittance and it equals to 1/Zjj.
*
jj
Y
+
is conjugate value of
self-ad mittance.
L
α
is the collection of load nodes in the system. Vi, Vj are the load node voltage vectors. vj is
the voltage amplitude value of load node, and vj2 is equal to Vj* Vj*.
*
ij
Z
is conjugate value of the mutual imped-
ance between load node i and j. Si is the equivalent load of the system for consumer node i. In order to ensure the
voltage stability, each node j in the system must satisfy the condition Lj 1. The global L-indicator of the system
is defined as follows.
max max( )
L
j
j
LL L
α
= =
(3)
Thereby, L ranges from 0 to 1.0. A smaller L means a more steady system. When L is close to 1.0, the system
tends to critical stable state. In order to guarantee system stability, the value of L must be less than 1.0, and the
difference between L value and 1.0 can be used as the voltage stability margin of the system. Equation (1) is a
complex expression with complex operation, and the computation will increase sharply with the expansion of
power grids. Because the value of reactance is far greater than that of resistance in actual power grids, and bus
voltage phase is small, etc., the literature [12] has proposed a simplified L-indicator without considering the
reactance and voltage phase. Based on Equation (1), Equation (4) can be obtained.
*
1
L
ij i
ii
ij
j
ZS
V
v
α
(4)
According to Equation (4), Equation (5) can be introduced.
X. Gong et al.
363
*
*
22
1 ()
1
1- =1-
L
L
ij i
ii
ij
j
j
ij i
ii
ij
jj
ZS
Vrejecti o n
v
L
ZS
Vfg
vv
α
α
+
=
+
(5)
According to the simplified method, Equation (6) can be obtained.
L
L
i
ii
ij
ii ji
i
ii
ij
ii ji
f
fv
f QX
g
gv
g PX
α
α
=
=
=
= −
(6)
where Pi and Qi represent the active power injection and reactive power injection respectively. Xji is the reac-
tance between load node i and j. Therefore, the Equation (7) is obtained.
222 2
11
1-1() ()
LL
i jiiji
jia ia
jji i
ij ij
QX PX
L fg
vvv v
∈∈
≠≠
= +=−+
∑∑
(7)
3. Optimal Reactive Power Compensation
The initial value of L-indicator is set in Equation (8).
22
1
1 ()()
LL
i jii ji
jori ia ia
ji i
ij ij
QX PX
Lvv v
∈∈
≠≠
=−+
∑∑
(8)
When reactive power compensation is needed, the injected reactive power is set as Qi. Then the reactive
power is updated to Qi + Qi, and the relationship between reactive power injection and Lj can be described as
Equation (9).
22
()
1
1 ()()
LL
iijii ji
jia ia
ji i
ij ij
QQ XPX
Lvv v
∈∈
≠≠
+∆ −
=−+
∑∑
(9)
When the first order partial derivative function value of local indicator Lj is set to zero, the extreme value of Lj
is obtained. As Lj is a convex function, the extreme value is the minimum. The power grid can run in optimum
steady state with the minimum Lj. The first order partial derivative function is described as follows.
1
j
j
j
m
L
Q
L
QL
Q


∂∆

= =

∂∆ 

∂∆


0
(10)
where m is the number of load nodes.
X. Gong et al.
364
Because there are usually more than one node in the power grid, solving the extreme value needs to be carried
out repeatedly. To simplify the computation and facilitate the understanding, the value of Lj corresponding to
each node is added and the sum is set to Lsum, then multiple minima (Lj, j = 1, 2,…, m) can be converted into one
minimum (Lsum) [13]. Its expression is as follows.
12sum m
L LLL=+++
(11)
22
1
()
1
[1()() ]
LL
miijii ji
sum j iaia
ji i
ij ij
QQ XPX
Lvv v
=∈∈
≠≠
+∆ −
=−+
∑∑ ∑
(12)
with
()
,
LL
iijii ji
ia ia
ii
ij ij
QQ XPX
v
vv
µ
∈∈
≠≠
+∆ −
= =
∑∑
(13)
Therefore, there is
1
22
1
1
1
22
1
1
L
L
j
sum ja j
j
sum
sum jm
mja jm
jm
X
Lvv
Q
L
QLX
Qvv
µ
µν
µ
µν

−⋅ ⋅


 +

∂∆



== 
∂∆ 



−⋅ ⋅

∂∆ 
 +



(14)
When the value of Equation (14) is equal to zero vector, it can be converted into matrix form as Equation
(15).
⋅⋅+⋅⋅∆=0DKQ DKQ
(15)
1
1
0
0
m
m
X
X


=


D
(16)
1
1
1
0
0
m
m
m
X
v
X
v




=



K
(17)
Finally, get
∆=−QQ
(18)
4. Simulation Results
According to the above derivation, the IEEE-14, IEEE-30, IEEE-57, and IEEE-118 systems have been tested on
matpower platform, and the simulation results are shown as below.
In Figure 1, with the original load of IEEE-14 standard model as a benchmark and one fifth of the original
load as the step length, the load changes from 0.2 times to 4.2 times of the original load. The curve L in Figure
1 is the global L-indicator value without reactive power compensation, while Lc is global L-indicator value with
reactive power compensation. Ls and Lsc in F igure 1 are the summation of all local L-indicator Lj (j = 1, 2,…, m)
without and with reactive power compensation respectively. Contrasting curves L and Lc, as depicted in Figure
1, it can be seen that the effect of improving voltage stability is obvious, and the heavier the load, the more sig-
nificant the effect is, which illustrate that the proposed method is conducive to ensure the safety of powe r
X. Gong et al.
365
Figure 1. L/Lsum of IEEE-14 with load changes.
grid operation and reduce the risk of grid collapse, especially when the grid voltage stability is poorer. For ex-
ample, corresponding to 3.8 of the horizontal axis, L-indicator value of L curve is close to 0.5, which means that
the system is in so sensitive a state that a slight increase of load will augment the possibility of voltage instabili-
ty, while L-indicator value of L curve is about 0.3 enough to avoid voltage instability. Comparing curves L and
Lc to curves Ls and Lsc, what can be concluded is that the two groups of curves are the same-the shape and the
trend. Therefore, L and Lc can be enlarged as Ls and Lsc, which is more convenient for observation.
In Figure 2, the IEEE-30 standard model has been tested. The load changes from 0.2 times to 4.0 times of the
original load. The effect of improving voltage stability is more apparent, and load power margin is also im-
proved.
According to Figures 3(a) and (b), the conclusions obtained are similar to the above. The simulation results
of the IEEE-14, IEEE-30, IEEE-57 and IEEE-118 have illustrated the universal applicability of the proposed
method.
However, the difference between the above models and the actual power grids can not be ignored, which
makes the voltage drop proportion of model greater than that of the actual power grids. In actual power grids,
the resistance is far less than the reactance and the voltage drop caused by the active load is almost negligible. If
the proposed method were applied to one model more similar to the actual power grid, the results would be more
ideal.
5. Conclusion
This paper analyzed how the voltage stability was influenced by different reactive power injection based on the
simplified L-indicator of on-line voltage stability monitoring. According to the basic d ifferential property of the
simplified L-indicator, a general and normative analytical algorithm about reactive power optimization was de-
duced. The simulation results that the proposed method applied to all systems of IEEE-14, IEEE-30, IEEE-57
and IEEE-118 can improve voltage stability and reduce the risk of power grid collapse significantly and effec-
tively, and the heavier load, the more significant effect, have verified that the proposed method could ensure the
safety of power grids operation and avoid voltage instability incidents with its universal applicability.
X. Gong et al.
366
Figure 2. IEEE-30 L/Lsum with load change.
(a) (b)
Figure 3. L(a)/Lsum(b) curves of 4 systems corresponding to each load changes.
Funding
The National Natural Science Fund Project (51107107).
Acknowledgements
We thank the support received from the National Natural Science Foundation of China (51107107) and the Chi-
nese National Key Basic Research and Development Program (973) (2013CB228203).
References
[1] IEEE Committee Report (19 90) Voltage Stability of Power Systems. Concepts, Analytical Tools, and Industry Expe-
rience, IEEE Publication, New York.
[2] IEEE/CIGRE Joint Task Force on Stability Terms and Definition (2004) Definition and Classification of Power Sys-
tem Stability. IEEE Transactions on Power System, 19, 1387-1401.
X. Gong et al.
367
[3] Zh ou , S.X., Zhu, L.Z., Guo X.J., et al. (2004 ) Power System Voltage Stability Research and Control. China Electric
Power Press, Bei jing.
[4] Li , X.Y. and Wang, X.Y. (200 3) Fast Voltage Stability Analysis Method Based on Static Equivalence and Singular
Value Resolution. Proceedings of the CSEE, 23, 1-4.
[5] Jia, H.J., Yu, Y.X. and Wang , C.S. (1999) An Application of Local Indicator to Online Monitoring and Control of
Power System Voltage Stability. Power System Technology, 23, 45-49.
[6] Yu, Y.X . (1999) Review on Voltage Stability Studies. Automation of Electric Power System, 23, 1-8.
[7] Zhang, J.H., Men g, X.P. , Liu, H.D. , et al. (2011) Analysis and Research of the Power System Voltage Stability. Power
Quality Management.
[8] Li u , Y.Q., Chen, C.Y., Liang , L., et al. (2003 ) Review of Dynamical Analysis Art of Voltage Stability in Powe r Sys-
tems. Proceedings of Csu-Epsa, 15, 105-10 8 .
[9] Duan , X.Z. , He, Y.Z. and Chen , D.S. (1994) Some Practical Criteria and Security Indices for Voltages Stability in
Electric Power System. Automation of Electric Power System, 18, 36-41.
[10] Kessel, P. and Glavitsch, H. (Swiss Federal Institute of Technology Zurich , S witzerlan d) (1986) Estimating the Vol-
tage Stability of a Power System. IEEE Transactions on Power Delivery.
[11] Jia, H.J., Sun, X.Y. and Zhang, P. (2006) Optimal Power Flow with Voltage Stability Constraint Based on L Index.
Proceedings of Csu-Epsa.
[12] Jiang, T., Li, G.Q., Jia, H.J., et al. (2012 ) An Application of Simplified L-Index and Its Sensitivity for On-line Moni-
toring and Control of Voltage Stability in the Large Scale Power Systems . Automation of Electric Power System, 36,
1-7.
[13] Wu, W.C. and Zhang, B.M . (2004) Optimal Matching Injected Flow for Optimal Sizing of Capacitor . Proceedings of
the CSEE, 24, 36-39.