
Enhanced Thermal Conductivity of Carbon Nanotube Arrays by Carbonizing Impregnated Phenolic Resins
Copyright © 2013 SciRes. MSA
456
conductivity of CNT arrays. Carbonization converted
phenolic matrix into pyrolytic carbon to form C/C com-
posites, and enhanced heat transfers between non-neigh-
boring CNTs. The thermal conductivity of <2 W/m·K for
a pure CNT array was significantly improved to 11.8 and
14.6 W/m·K with carbonization at 800˚C and 1400˚C,
respectively. The C/C composites showed high thermal
stability up to ~550˚C in air and up to ~1000˚C in Ar.
When working at 500˚C in Ar, the thermal conductivity
was up to 21.4 W/m·K.
5. Acknowledgements
This work is supported by the National Natural Science
Foundation of China (21273269), National Basic Re-
search Program (2010CB934700) by the Ministry of
Science and Technology, and International Science &
Technology Cooperation Project (BZ2011049) of Jiangsu
Province.
REFERENCES
[1] S. Berber, Y.-K. Kwon and D. Tománek, “Unusually
High Thermal Conductivity of Carbon Nanotubes,” Phy-
sical Review Letters, Vol. 84, No. 20, 2000, pp. 4613-
4616. doi:10.1103/PhysRevLett.84.4613
[2] P. Kim, L. Shi, A. Majumdar and P. L. McEuen, “Ther-
mal Transport Measurements of Individual Multiwalled
Nanotubes,” Physical Review Letters, Vol. 87, No. 21,
2001, Article ID: 215502.
doi:10.1103/PhysRevLett.87.215502
[3] M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T.
Ikuta, H. Abe and T. Shimizu, “Measuring the Thermal
Conductivity of a Single Carbon Nanotube,” Physical Re-
view Letters, Vol. 95, No. 6, 2005, Article ID: 065502.
doi:10.1103/PhysRevLett.95.065502
[4] E. Pop, D. Mann, Q. Wang, K. Goodson and H. Dai,
“Thermal Conductance of an Individual Single-Wall Car-
bon Nanotube above Room Temperature,” Nano Letters,
Vol. 6, No. 1, 2006, pp. 96-100. doi:10.1021/nl052145f
[5] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K.
Hyun, A. T. Johnson and J. E. Fischer, “Carbon Nanotube
Composites for Thermal Management,” Applied Physics
Letters, Vol. 80, No. 15, 2002, pp. 2767-2769.
doi:10.1063/1.1469696
[6] C. H. Liu, H. Huang, Y. Wu and S. S. Fan, “Thermal
Conductivity Improvement of Silicone Elastomer with
Carbon Nanotube Loading,” Applied Physics Letters, Vol.
84, No. 21, 2004, pp. 4248-4250. doi:10.1063/1.1756680
[7] T. Morishita, M. Matsushita, Y. Katagiri and K. Fuku-
mori, “A Novel Morphological Model for Carbon Nano-
tube/Polymer Composites Having High Thermal Conduc-
tivity and Electrical Insulation,” Journal of Materials
Chemistry, Vol. 21, No. 15, 2011, pp. 5610-5614.
doi:10.1039/c0jm04007j
[8] A. M. Marconnet, N. Yamamoto, M. A. Panzer, B. L.
Wardle and K. E. Goodson, “Thermal Conduction in
Aligned Carbon Nanotube-Polymer Nanocomposites with
High Packing Density,” ACS Nano, Vol. 5, No. 6, 2011,
pp. 4818-4825. doi:10.1021/nn200847u
[9] D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G.
Wang, Q. Zhou, Q. Wang and J. Q. Li, “Thermal Con-
ductivity of Multiwalled Carbon Nanotubes,” Physical
Review B, Vol. 66, No. 16, 2002, Article ID: 165440.
doi:10.1103/PhysRevB.66.165440
[10] X. J. Hu, A. A. Padilla, J. Xu, T. S. Fisher and K. E.
Goodson, “3-Omega Measurements of Vertically Oriented
Carbon Nanotubes on Silicon,” Journal of Heat Transfer,
Vol. 128, No. 11, 2006, pp. 1109-1113.
doi:10.1115/1.2352778
[11] Y. Xu, Y. Zhang, E. Suhir and X. Wang, “Thermal Prop-
erties of Carbon Nanotube Array Used for Integrated
Circuit Cooling,” Journal of Applied Physics, Vol. 100,
No. 7, 2006, Article ID: 074302. doi:10.1063/1.2337254
[12] S. Shaikh, L. Li, K. Lafdi and J. Huie, “Thermal Conduc-
tivity of an Aligned Carbon Nanotube Array,” Carbon,
Vol. 45, No. 13, 2007, pp. 2608-2613.
doi:10.1016/j.carbon.2007.08.011
[13] M. B. Jakubinek, M. Anne White, G. Li, C. Jayasinghe,
W. Cho, M. J. Schulz and V. Shanov, “Thermal and Elec-
trical Conductivity of Tall, Vertically Aligned Carbon
Nanotube Arrays,” Carbon, Vol. 48, No. 13, 2010, pp.
3947-3952. doi:10.1016/j.carbon.2010.06.063
[14] Q. Ngo, B. A. Cruden, A. M. Cassell, G. Sims, M. Mey-
yappan, J. Li and C. Y. Yang, “Thermal Interface Proper-
ties of Cu filled Vertically Aligned Carbon Nanofiber
Arrays,” Nano Letters, Vol. 4, No. 12, 2004, pp. 2403-
2407. doi:10.1021/nl048506t
[15] M. A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai
and K. E. Goodson, “Thermal Properties of Metal-Coated
Vertically Aligned Single-Wall Nanotube Arrays,” Jour-
nal of Heat Transfer, Vol. 130, No. 5, 2008, Article ID:
052401. doi:10.1115/1.2885159
[16] H. Huang, C. Liu, Y. Wu and S. Fan, “Aligned Carbon
Nanotube Composite Films for Thermal Management,”
Advanced Materials, Vol. 17, No. 13, 2005, pp. 1652-
1656. doi:10.1002/adma.200500467
[17] T. Borca-Tasciuc, M. Mazumder, Y. Son, S. K. Pal, L. S.
Schadler and P. M. Ajayan, “Anisotropic Thermal Diffu-
sivity Characterization of Aligned Carbon Nanotube-
Polymer Composites,” Journal of Nanoscience and Nano-
technology, Vol. 7, No. 4-5, 2007, pp. 1581-1588.
doi:10.1166/jnn.2007.657
[18] W. Lin, K.-S. Moon and C. P. Wong, “A Combined Pro-
cess of in Situ Functionalization and Microwave Treat-
ment to Achieve Ultrasmall Thermal Expansion of Align-
ed Carbon Nanotube-Polymer Nanocomposites: Toward
Applications as Thermal Interface Materials,” Advanced
Materials, Vol. 21, No. 23, 2009, pp. 2421-2424.
doi:10.1002/adma.200803548
[19] W. Lin, R. Zhang, K.-S. Moon and C. P. Wong, “Mo-
lecular Phonon Couplers at Carbon Nanotube/Substrate
Interface to Enhance Interfacial Thermal Transport,”
Carbon, Vol. 48, No. 1, 2010, pp. 107-113.
doi:10.1016/j.carbon.2009.08.033
[20] Q.-M. Gong, Z. Li, X.-D. Bai, D. Li, Y. Zhao and J. Li-