|
[1]
|
Moses, H., Matheson, D.H.M., Cairns-Smith, S., George, B.P., Palisch, C. and Dorsey, E.R. (2015) The Anatomy of Medical Research: US and International Comparisons. JAMA, 313, 174-189. https://doi.org/10.1001/jama.2014.15939
|
|
[2]
|
Gitterman, D.P., Greenwood, R.S., Kocis, K.C., Mayes, B.R. and McKethan, A.N. (2004) Did a Rising Tide Lift All Boats? The NIH Budget and Pediatric Research Portfolio. Health Affairs, 23, 113-124. https://doi.org/10.1377/hlthaff.23.5.113
|
|
[3]
|
Vazin, T. and Freed, W.J. (2010) Human Embryonic Stem Cells: Derivation, Culture, and Differentiation: A Review. Restorative Neurology and Neuroscience, 28, 589-603. https://doi.org/10.3233/rnn-2010-0543
|
|
[4]
|
Zakrzewski, W., Dobrzyński, M., Szymonowicz, M. and Rybak, Z. (2019) Stem Cells: Past, Present, and Future. Stem Cell Research & Therapy, 10, Article No. 68. https://doi.org/10.1186/s13287-019-1165-5
|
|
[5]
|
Charitos, I.A., Ballini, A., Cantore, S., Boccellino, M., Di Domenico, M., Borsani, E., et al. (2021) Stem Cells: A Historical Review about Biological, Religious, and Ethical Issues. Stem Cells International, 2021, Article ID: 9978837. https://doi.org/10.1155/2021/9978837
|
|
[6]
|
Boroviak, T. and Nichols, J. (2014) The Birth of Embryonic Pluripotency. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, Article ID: 20130541. https://doi.org/10.1098/rstb.2013.0541
|
|
[7]
|
Ware, C.B. (2014) Naive Embryonic Stem Cells: The Future of Stem Cell Research? Regenerative Medicine, 9, 401-403. https://doi.org/10.2217/rme.14.31
|
|
[8]
|
Prentice, D.A. (2019) Adult Stem Cells: Successful Standard for Regenerative Medicine. Circulation Research, 124, 837-839. https://doi.org/10.1161/circresaha.118.313664
|
|
[9]
|
Mlsna, L. (2011) Stem Cell Based Treatments and Novel Considerations for Conscience Clause Legislation. Indiana Health Law Review, 8, 472-496. https://doi.org/10.18060/2020
|
|
[10]
|
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Krause, D.S., et al. (2006) Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. the International Society for Cellular Therapy Position Statement. Cytotherapy, 8, 315-317. https://doi.org/10.1080/14653240600855905
|
|
[11]
|
Galderisi, U., Peluso, G. and Di Bernardo, G. (2022) Clinical Trials Based on Mesenchymal Stromal Cells Are Exponentially Increasing: Where Are We in Recent Years? Stem Cell Reviews and Reports, 18, 23-36. https://doi.org/10.1007/s12015-021-10231-w
|
|
[12]
|
Mellman, I., Coukos, G. and Dranoff, G. (2011) Cancer Immunotherapy Comes of Age. Nature, 480, 480-489. https://doi.org/10.1038/nature10673
|
|
[13]
|
Ancans, J. (2012) Cell Therapy Medicinal Product Regulatory Framework in Europe and Its Application for MSC-Based Therapy Development. Frontiers in Immunology, 3, Article 253. https://doi.org/10.3389/fimmu.2012.00253
|
|
[14]
|
Yin, J.Q., Zhu, J. and Ankrum, J.A. (2019) Manufacturing of Primed Mesenchymal Stromal Cells for Therapy. Nature Biomedical Engineering, 3, 90-104. https://doi.org/10.1038/s41551-018-0325-8
|
|
[15]
|
Horwitz, E.M., Prockop, D.J., Fitzpatrick, L.A., Koo, W.W.K., Gordon, P.L., Neel, M., et al. (1999) Transplantability and Therapeutic Effects of Bone Marrow-Derived Mesenchymal Cells in Children with Osteogenesis Imperfecta. Nature Medicine, 5, 309-313. https://doi.org/10.1038/6529
|
|
[16]
|
Horwitz, E.M., Prockop, D.J., Gordon, P.L., Koo, W.W.K., Fitzpatrick, L.A., Neel, M.D., et al. (2001) Clinical Responses to Bone Marrow Transplantation in Children with Severe Osteogenesis Imperfecta. Blood, 97, 1227-1231. https://doi.org/10.1182/blood.v97.5.1227
|
|
[17]
|
Horwitz, E.M., Gordon, P.L., Koo, W.K.K., Marx, J.C., Neel, M.D., McNall, R.Y., et al. (2002) Isolated Allogeneic Bone Marrow-Derived Mesenchymal Cells Engraft and Stimulate Growth in Children with Osteogenesis Imperfecta: Implications for Cell Therapy of Bone. Proceedings of the National Academy of Sciences, 99, 8932-8937. https://doi.org/10.1073/pnas.132252399
|
|
[18]
|
Le Blanc, K., Götherström, C., Ringdén, O., Hassan, M., McMahon, R., Horwitz, E., et al. (2005) Fetal Mesenchymal Stem-Cell Engraftment in Bone after in Utero Transplantation in a Patient with Severe Osteogenesis Imperfecta. Transplantation, 79, 1607-1614. https://doi.org/10.1097/01.tp.0000159029.48678.93
|
|
[19]
|
Wynne-Davies, R. and Gormley, J. (1985) The Prevalence of Skeletal Dysplasias. An Estimate of Their Minimum Frequency and the Number of Patients Requiring Orthopedic Care. The Journal of Bone and Joint Surgery. The Journal of Bone & Joint Surgery British Volume, 67, 133-137. https://doi.org/10.1302/0301-620x.67b1.3155744
|
|
[20]
|
Shapiro, J.R. and Sponsellor, P.D. (2009) Osteogenesis Imperfecta: Questions and Answers. Current Opinion in Pediatrics, 21, 709-716. https://doi.org/10.1097/mop.0b013e328332c68f
|
|
[21]
|
Marginean, O., Tamasanu, R.C., Mang, N., Mozos, I. and Brad, G.F. (2017) Therapy with Pamidronate in Children with Osteogenesis Imperfecta. Drug Design, Development and Therapy, 11, 2507-2515. https://doi.org/10.2147/dddt.s141075
|
|
[22]
|
Infante, A., Gener, B., Vázquez, M., Olivares, N., Arrieta, A., Grau, G., et al. (2021) Reiterative Infusions of MSCs Improve Pediatric Osteogenesis Imperfecta Eliciting a Pro-Osteogenic Paracrine Response: TERCELOI Clinical Trial. Clinical and Translational Medicine, 11, e265. https://doi.org/10.1002/ctm2.265
|
|
[23]
|
Sagar, R.L., Åström, E., Chitty, L.S., Crowe, B., David, A.L., DeVile, C., et al. (2024) An Exploratory Open-Label Multicentre Phase I/II Trial Evaluating the Safety and Efficacy of Postnatal or Prenatal and Postnatal Administration of Allogeneic Expanded Fetal Mesenchymal Stem Cells for the Treatment of Severe Osteogenesis Imperfecta in Infants and Fetuses: The BOOSTB4 Trial Protocol. BMJ Open, 14, e079767. https://doi.org/10.1136/bmjopen-2023-079767
|
|
[24]
|
Kim, H.K.W. and Morris, W.Z. (2021) Pediatric Femoral Head Osteonecrosis Secondary to Trauma, Sickle Cell Disease, and Corticosteroid Therapy. Journal of the Pediatric Orthopaedic Society of North America, 3, Article 285. https://doi.org/10.55275/jposna-2021-285
|
|
[25]
|
Rodríguez-Olivas, A.O., Hernández-Zamora, E. and Reyes-Maldonado, E. (2022) Legg-Calve-Perthes Disease Overview. Orphanet Journal of Rare Diseases, 17, Article No. 125. https://doi.org/10.1186/s13023-022-02275-z
|
|
[26]
|
Karimova, E.J., Rai, S.N., Howard, S.C., Neel, M., Britton, L., Pui, C., et al. (2007) Femoral Head Osteonecrosis in Pediatric and Young Adult Patients with Leukemia or Lymphoma. Journal of Clinical Oncology, 25, 1525-1531. https://doi.org/10.1200/jco.2006.07.9947
|
|
[27]
|
Martínez-Álvarez, S., Galán-Olleros, M., Azorín-Cuadrillero, D., Palazón-Quevedo, Á., González-Murillo, Á., Melen-Frajlich, G.J., et al. (2023) Intraosseous Injection of Mesenchymal Stem Cells for the Treatment of Osteonecrosis of the Immature Femoral Head and Prevention of Head Deformity: A Study in a Pig Model. Science Progress, 106, 1-16. https://doi.org/10.1177/00368504231179790
|
|
[28]
|
Tomaru, Y., Sugaya, H., Yoshioka, T., Arai, N., Abe, T., Tsukagoshi, Y., et al. (2023) Effects of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation in Piglet Legg-Calve-Perthes Disease Models: A Pilot Study. Journal of Pediatric Orthopaedics B, 33, 358-362. https://doi.org/10.1097/bpb.0000000000001095
|
|
[29]
|
Koo, K., Kim, R., Ko, G., Song, H., Jeong, S. and Cho, S. (1995) Preventing Collapse in Early Osteonecrosis of the Femoral Head. A Randomised Clinical Trial of Core Decompression. The Journal of Bone and Joint Surgery . British Volume , 77, 870-874.
https://doi.org/10.1302/0301-620x.77b6.7593097
|
|
[30]
|
Hernigou, P. and Beaujean, F. (2002) Treatment of Osteonecrosis with Autologous Bone Marrow Grafting. Clinical Orthopaedics and Related Research, 405, 14-23. https://doi.org/10.1097/00003086-200212000-00003
|
|
[31]
|
Yan, Z.Q., Chen, Y.S., Li, W.J., et al. (2006) Treatment of Osteonecrosis of the Femoral Head by Percutaneous Decompression and Autologous Bone Marrow Mono-Nuclear Cell Infusion. Chinese Journal of Traumatology, 9, 3-7.
|
|
[32]
|
Gangji, V., De Maertelaer, V. and Hauzeur, J. (2011) Autologous Bone Marrow Cell Implantation in the Treatment of Non-Traumatic Osteonecrosis of the Femoral Head: Five Year Follow-Up of a Prospective Controlled Study. Bone, 49, 1005-1009. https://doi.org/10.1016/j.bone.2011.07.032
|
|
[33]
|
Sadat-Ali, M., Al-Omran, A.S., AlTabash, K., Acharya, S., Hegazi, T.M. and Al Muhaish, M.I. (2022) The Clinical and Radiological Effectiveness of Autologous Bone Marrow Derived Osteoblasts (ABMDO) in the Management of Avascular Necrosis of Femoral Head (ANFH) in Sickle Cell Disease (SCD). Journal of Experimental Orthopaedics, 9, Article No. 18. https://doi.org/10.1186/s40634-022-00449-z
|
|
[34]
|
Gong, S.Y., Kim, H.W., Park, H., Lee, S.Y. and Lee, K.S. (2011) Effects of Multiple Drilling on the Ischemic Capital Femoral Epiphysis of Immature Piglets. Yonsei Medical Journal, 52, 809-817. https://doi.org/10.3349/ymj.2011.52.5.809
|
|
[35]
|
Li, Z., Liao, W., Cui, X., Zhao, Q., Liu, M., Chen, Y., et al. (2011) Intravenous Transplantation of Allogeneic Bone Marrow Mesenchymal Stem Cells and Its Directional Migration to the Necrotic Femoral Head. International Journal of Medical Sciences, 8, 74-83. https://doi.org/10.7150/ijms.8.74
|
|
[36]
|
Sadat-Ali, M. (1993) Avascular Necrosis of the Femoral Head in Sickle Cell Disease an Integrated Classification. Clinical Orthopaedics and Related Research, 290, 200-205. https://doi.org/10.1097/00003086-199305000-00026
|
|
[37]
|
Adekile, A.D., Gupta, R., Al‐Khayat, A., Mohammed, A., Atyani, S. and Thomas, D. (2018) Risk of Avascular Necrosis of the Femoral Head in Children with Sickle Cell Disease on Hydroxyurea: MRI Evaluation. Pediatric Blood & Cancer, 66, e27503. https://doi.org/10.1002/pbc.27503
|
|
[38]
|
Severyns, M. and Gayet, L.E. (2021) Aseptic Osteonecrosis of the Femoral Head in Patients with Sickle Cell Anemia. Morphologie, 105, 94-101. https://doi.org/10.1016/j.morpho.2020.08.002
|
|
[39]
|
Milner, P.F., Kraus, A.P., Sebes, J.I., Sleeper, L.A., Dukes, K.A., Embury, S.H., et al. (1991) Sickle Cell Disease as a Cause of Osteonecrosis of the Femoral Head. New England Journal of Medicine, 325, 1476-1481. https://doi.org/10.1056/nejm199111213252104
|
|
[40]
|
Shrader, M.W., Jacofsky, D.J., Stans, A.A., Shaughnessy, W.J. and Haidukewych, G.J. (2007) Femoral Neck Fractures in Pediatric Patients: 30 Years Experience at a Level 1 Trauma Center. Clinical Orthopaedics and Related Research, 454, 169-173. https://doi.org/10.1097/01.blo.0000238794.82466.3d
|
|
[41]
|
Bali, K., Sudesh, P., Patel, S., Kumar, V., Saini, U. and Dhillon, M.S. (2011) Pediatric Femoral Neck Fractures: Our 10 Years of Experience. Clinics in Orthopedic Surgery, 3, 302-308. https://doi.org/10.4055/cios.2011.3.4.302
|
|
[42]
|
Stone, J.D., Hill, M.K., Pan, Z. and Novais, E.N. (2015) Open Reduction of Pediatric Femoral Neck Fractures Reduces Osteonecrosis Risk. Orthopedics, 38, e983-e990. https://doi.org/10.3928/01477447-20151020-06
|
|
[43]
|
Spence, D., DiMauro, J., Miller, P.E., Glotzbecker, M.P., Hedequist, D.J. and Shore, B.J. (2016) Osteonecrosis after Femoral Neck Fractures in Children and Adolescents: Analysis of Risk Factors. Journal of Pediatric Orthopaedics, 36, 111-116. https://doi.org/10.1097/bpo.0000000000000424
|
|
[44]
|
Mehlman, C.T., Hubbard, G.W., Crawford, A.H., Roy, D.R. and Wall, E.J. (2000) Traumatic Hip Dislocation in Children. Long-Term Follow up of 42 Patients. Clinical Orthopaedics and Related Research, 376, 68-79. https://doi.org/10.1097/00003086-200007000-00011
|
|
[45]
|
Vialle, R., Odent, T., Pannier, S., Pauthier, F., Laumonier, F. and Glorion, C. (2005) Traumatic Hip Dislocation in Childhood. Journal of Pediatric Orthopaedics, 25, 138-144. https://doi.org/10.1097/01.bpo.0000151059.85227.ea
|
|
[46]
|
Toyokawa, S., Maeda, E. and Kobayashi, Y. (2016) Estimation of the Number of Children with Cerebral Palsy Using Nationwide Health Insurance Claims Data in Japan. Developmental Medicine & Child Neurology, 59, 317-321. https://doi.org/10.1111/dmcn.13278
|
|
[47]
|
Fehlings, D.L., Zarrei, M., Engchuan, W., Sondheimer, N., Thiruvahindrapuram, B., MacDonald, J.R., et al. (2024) Comprehensive Whole-Genome Sequence Analyses Provide Insights into the Genomic Architecture of Cerebral Palsy. Nature Genetics, 56, 585-594. https://doi.org/10.1038/s41588-024-01686-x
|
|
[48]
|
Jin, S.C., Lewis, S.A., Bakhtiari, S., Zeng, X., Sierant, M.C., Shetty, S., et al. (2020) Mutations Disrupting Neuritogenesis Genes Confer Risk for Cerebral Palsy. Nature Genetics, 52, 1046-1056. https://doi.org/10.1038/s41588-020-0695-1
|
|
[49]
|
Purandare, C., Shitole, D.G., Belle, V., Kedari, A., Bora, N. and Joshi, M. (2012) Therapeutic Potential of Autologous Stem Cell Transplantation for Cerebral Palsy. Case Reports in Transplantation, 2012, Article ID: 825289. https://doi.org/10.1155/2012/825289
|
|
[50]
|
Luan, Z., Liu, W., Qu, S., Du, K., He, S., Wang, Z., et al. (2012) Effects of Neural Progenitor Cell Transplantation in Children with Severe Cerebral Palsy. Cell Transplantation, 21, 91-98. https://doi.org/10.3727/096368912x633806
|
|
[51]
|
Chen, G., Wang, Y., Xu, Z., Fang, F., Xu, R., Wang, Y., et al. (2013) Neural Stem Cell-Like Cells Derived from Autologous Bone Mesenchymal Stem Cells for the Treatment of Patients with Cerebral Palsy. Journal of Translational Medicine, 11, Article No. 21. https://doi.org/10.1186/1479-5876-11-21
|
|
[52]
|
Cox, C.S., Juranek, J., Kosmach, S., Pedroza, C., Thakur, N., Dempsey, A., et al. (2022) Autologous Cellular Therapy for Cerebral Palsy: A Randomized, Crossover Trial. Brain Communications, 4, fcac131. https://doi.org/10.1093/braincomms/fcac131
|
|
[53]
|
Doi, H., Tsumura, N., Kanai, C., Masui, K., Mitsuhashi, R. and Nagasawa, T. (2021) Automatic Classification of Adult Males with and without Autism Spectrum Disorder by Non-Contact Measurement of Autonomic Nervous System Activation. Frontiers in Psychiatry, 12, Article 625978. https://doi.org/10.3389/fpsyt.2021.625978
|
|
[54]
|
Ti, D., Hao, H., Tong, C., Liu, J., Dong, L., Zheng, J., et al. (2015) LPS-Preconditioned Mesenchymal Stromal Cells Modify Macrophage Polarization for Resolution of Chronic Inflammation via Exosome-Shuttled Let-7b. Journal of Translational Medicine, 13, Article No. 308. https://doi.org/10.1186/s12967-015-0642-6
|
|
[55]
|
Bradstreet, J.J., Sych, N., Antonucci, N., Klunnik, M., Ivankova, O., Matyashchuk, I., et al. (2014) Efficacy of Fetal Stem Cell Transplantation in Autism Spectrum Disorders: An Open-Labeled Pilot Study. Cell Transplantation, 23, 105-112. https://doi.org/10.3727/096368914x684916
|
|
[56]
|
Lv, Y., Zhang, Y., Liu, M., Qiuwaxi, J., Ashwood, P., Cho, S.C., et al. (2013) Transplantation of Human Cord Blood Mononuclear Cells and Umbilical Cord-Derived Mesenchymal Stem Cells in Autism. Journal of Translational Medicine, 11, Article No. 196. https://doi.org/10.1186/1479-5876-11-196
|
|
[57]
|
Bansal, H., Verma, P., Agrawal, A., Leon, J., Sundell, I.B. and Koka, P.S. (2016) A Short Study Report on Bone Marrow Aspirate Concentrate Cell Therapy in Ten South Asian Indian Patients with Autism. International Journal of Stem Cells, 11, 25-36.
|
|
[58]
|
Riordan, N.H., Hincapié, M.L., Morales, I., Fernández, G., Allen, N., Leu, C., et al. (2019) Allogeneic Human Umbilical Cord Mesenchymal Stem Cells for the Treatment of Autism Spectrum Disorder in Children: Safety Profile and Effect on Cytokine Levels. Stem Cells Translational Medicine, 8, 1008-1016. https://doi.org/10.1002/sctm.19-0010
|
|
[59]
|
Sharma, A., Gokulchandran, N., Sane, H., Nagrajan, A., Paranjape, A., Kulkarni, P., et al. (2013) Autologous Bone Marrow Mononuclear Cell Therapy for Autism: An Open Label Proof of Concept Study. Stem Cells International, 2013, Article ID: 623875. https://doi.org/10.1155/2013/623875
|
|
[60]
|
Nguyen Thanh, L., Nguyen, H., Ngo, M.D., Bui, V.A., Dam, P.T.M., Bui, H.T.P., et al. (2020) Outcomes of Bone Marrow Mononuclear Cell Transplantation Combined with Interventional Education for Autism Spectrum Disorder. Stem Cells Translational Medicine, 10, 14-26. https://doi.org/10.1002/sctm.20-0102
|
|
[61]
|
Bowman, S.M., Bird, T.M., Aitken, M.E. and Tilford, J.M. (2008) Trends in Hospitalizations Associated with Pediatric Traumatic Brain Injuries. Pediatrics, 122, 988-993. https://doi.org/10.1542/peds.2007-3511
|
|
[62]
|
Hutchison, J.S., Ward, R.E., Lacroix, J., Hébert, P.C., Barnes, M.A., Bohn, D.J., et al. (2008) Hypothermia Therapy after Traumatic Brain Injury in Children. New England Journal of Medicine, 358, 2447-2456. https://doi.org/10.1056/nejmoa0706930
|
|
[63]
|
Shi, K., Zhang, J., Dong, J. and Shi, F. (2019) Dissemination of Brain Inflammation in Traumatic Brain Injury. Cellular & Molecular Immunology, 16, 523-530. https://doi.org/10.1038/s41423-019-0213-5
|
|
[64]
|
Centers for Disease Control and Prevention (CDC) (2000) Traumatic Brain Injury (TBI): Incidence and Distribution, 2014. Introduction to Brain Injury-Facts and Stats. https://www.cdc.gov/traumaticbraininjury/data/index.html
|
|
[65]
|
Popernack, M.L., Gray, N. and Reuter-Rice, K. (2015) Moderate-to-Severe Traumatic Brain Injury in Children: Complications and Rehabilitation Strategies. Journal of Pediatric Health Care, 29, E1-E7. https://doi.org/10.1016/j.pedhc.2014.09.003
|
|
[66]
|
Narayan, R.K., Michel, M.E., Ansell, B., Baethmann, A., Biegon, A., Bracken, M.B., et al. (2002) Clinical Trials in Head Injury. Journal of Neurotrauma, 19, 503-557. https://doi.org/10.1089/089771502753754037
|
|
[67]
|
Neumane, S., Câmara-Costa, H., Francillette, L., Araujo, M., Toure, H., Brugel, D., et al. (2021) Functional Outcome after Severe Childhood Traumatic Brain Injury: Results of the TGE Prospective Longitudinal Study. Annals of Physical and Rehabilitation Medicine, 64, Article ID: 101375. https://doi.org/10.1016/j.rehab.2020.01.008
|
|
[68]
|
Levison, S., Clausi, M. and Kumari, E. (2016) Unmasking the Responses of the Stem Cells and Progenitors in the Subventricular Zone after Neonatal and Pediatric Brain Injuries. Neural Regeneration Research, 11, 45-48. https://doi.org/10.4103/1673-5374.175041
|
|
[69]
|
Levison, S.W. and Goldman, J.E. (1997) Multipotential and Lineage Restricted Precursors Coexist in the Mammalian Perinatal Subventricular Zone. Journal of Neuroscience Research, 48, 83-94. https://doi.org/10.1002/(sici)1097-4547(19970415)48:2<83::aid-jnr1>3.0.co;2-8
|
|
[70]
|
Bergmann, O., Liebl, J., Bernard, S., Alkass, K., Yeung, M.S.Y., Steier, P., et al. (2012) The Age of Olfactory Bulb Neurons in Humans. Neuron, 74, 634-639. https://doi.org/10.1016/j.neuron.2012.03.030
|
|
[71]
|
Weston, N.M. and Sun, D. (2018) The Potential of Stem Cells in Treatment of Traumatic Brain Injury. Current Neurology and Neuroscience Reports, 18, Article No. 1. https://doi.org/10.1007/s11910-018-0812-z
|
|
[72]
|
Borlongan, C., Mashkouri, S., Crowley, M., Liska, M. and Corey, S. (2016) Utilizing Pharmacotherapy and Mesenchymal Stem Cell Therapy to Reduce Inflammation Following Traumatic Brain Injury. Neural Regeneration Research, 11, 1379-1384. https://doi.org/10.4103/1673-5374.191197
|
|
[73]
|
Lengel, D., Sevilla, C., Romm, Z.L., Huh, J.W. and Raghupathi, R. (2020) Stem Cell Therapy for Pediatric Traumatic Brain Injury. Frontiers in Neurology, 11, Article 601286. https://doi.org/10.3389/fneur.2020.601286
|
|
[74]
|
Sekiya, I., Larson, B.L., Smith, J.R., Pochampally, R., Cui, J. and Prockop, D.J. (2002) Expansion of Human Adult Stem Cells from Bone Marrow Stroma: Conditions That Maximize the Yields of Early Progenitors and Evaluate Their Quality. Stem Cells, 20, 530-541. https://doi.org/10.1634/stemcells.20-6-530
|
|
[75]
|
Ghasemi, N. (2018) Transdifferentiation of Human Adipose-Derived Mesenchymal Stem Cells into Oligodendrocyte Progenitor Cells. Iranian Journal of Neurology, 17, 24-30.
|
|
[76]
|
Liao, G.P., Harting, M.T., Hetz, R.A., Walker, P.A., Shah, S.K., Corkins, C.J., et al. (2015) Autologous Bone Marrow Mononuclear Cells Reduce Therapeutic Intensity for Severe Traumatic Brain Injury in Children. Pediatric Critical Care Medicine, 16, 245-255. https://doi.org/10.1097/pcc.0000000000000324
|
|
[77]
|
Cox, C.S., Baumgartner, J.E., Harting, M.T., Worth, L.L., Walker, P.A., Shah, S.K., et al. (2011) Autologous Bone Marrow Mononuclear Cell Therapy for Severe Traumatic Brain Injury in Children. Neurosurgery, 68, 588-600. https://doi.org/10.1227/neu.0b013e318207734c
|
|
[78]
|
Tian, C., Wang, X., Wang, X., Wang, L., Wang, X., Wu, S., et al. (2013) Autologous Bone Marrow Mesenchymal Stem Cell Therapy in the Subacute Stage of Traumatic Brain Injury by Lumbar Puncture. Experimental and Clinical Transplantation, 11, 176-181. https://doi.org/10.6002/ect.2012.0053
|
|
[79]
|
http://www.clinicaltrials.gov/assessedOctober20,2024
|
|
[80]
|
Bui, D.S., Lodge, C.J., Burgess, J.A., Lowe, A.J., Perret, J., Bui, M.Q., et al. (2018) Childhood Predictors of Lung Function Trajectories and Future COPD Risk: A Prospective Cohort Study from the First to the Sixth Decade of Life. The Lancet Respiratory Medicine, 6, 535-544. https://doi.org/10.1016/s2213-2600(18)30100-0
|
|
[81]
|
Boon, M., Vermeulen, F.L., Gysemans, W., Proesmans, M., Jorissen, M. and De Boeck, K. (2015) Lung Structure-Function Correlation in Patients with Primary Ciliary Dyskinesia. Thorax, 70, 339-345. https://doi.org/10.1136/thoraxjnl-2014-206578
|
|
[82]
|
Vosdoganes, P., Lim, R., Moss, T.J.M. and Wallace, E.M. (2012) Cell Therapy: A Novel Treatment Approach for Bronchopulmonary Dysplasia. Pediatrics, 130, 727-737. https://doi.org/10.1542/peds.2011-2576
|
|
[83]
|
Shahzad, T., Radajewski, S., Chao, C., Bellusci, S. and Ehrhardt, H. (2016) Pathogenesis of Bronchopulmonary Dysplasia: When Inflammation Meets Organ Development. Molecular and Cellular Pediatrics, 3, Article No. 23. https://doi.org/10.1186/s40348-016-0051-9
|
|
[84]
|
Jensen, E.A. and Schmidt, B. (2014) Epidemiology of Bronchopulmonary Dysplasia. Birth Defects Research Part A: Clinical and Molecular Teratology, 100, 145-157. https://doi.org/10.1002/bdra.23235
|
|
[85]
|
Alshehri, M., Alshehri, M., Algossadi, R. and Alshehri, M. (2020) Predictors of Bronchopulmonary Dysplasia in Saudi Preterm Infants. Annals of Neonatology, 2, 30-45.
|
|
[86]
|
Abushahin, A., Hamad, S.G., Sabouni, A., Alomar, S., Sudarsanan, A., Kammouh, H., et al. (2024) Incidence and Predictors of Bronchopulmonary Dysplasia Development and Severity among Preterm Infants Born at 32 Weeks of Gestation or Less. Cureus, 16, e59425. https://doi.org/10.7759/cureus.59425
|
|
[87]
|
Aoyama, B.C., Rice, J.L., McGrath-Morrow, S.A. and Collaco, J.M. (2022) Mortality in Outpatients with Bronchopulmonary Dysplasia. The Journal of Pediatrics, 241, 48-53.E1. https://doi.org/10.1016/j.jpeds.2021.09.055
|
|
[88]
|
Cristea, A.I., Carroll, A.E., Davis, S.D., Swigonski, N.L. and Ackerman, V.L. (2013) Outcomes of Children with Severe Bronchopulmonary Dysplasia Who Were Ventilator Dependent at Home. Pediatrics, 132, e727-e734. https://doi.org/10.1542/peds.2012-2990
|
|
[89]
|
Jeng, S., Hsu, C., Tsao, P., Chou, H., Lee, W., Kao, H., et al. (2007) Bronchopulmonary Dysplasia Predicts Adverse Developmental and Clinical Outcomes in Very-Low‐Birthweight Infants. Developmental Medicine & Child Neurology, 50, 51-57. https://doi.org/10.1111/j.1469-8749.2007.02011.x
|
|
[90]
|
van Haaften, T., Byrne, R., Bonnet, S., Rochefort, G.Y., Akabutu, J., Bouchentouf, M., et al. (2009) Airway Delivery of Mesenchymal Stem Cells Prevents Arrested Alveolar Growth in Neonatal Lung Injury in Rats. American Journal of Respiratory and Critical Care Medicine, 180, 1131-1142. https://doi.org/10.1164/rccm.200902-0179oc
|
|
[91]
|
Pierro, M., Ionescu, L., Montemurro, T., Vadivel, A., Weissmann, G., Oudit, G., et al. (2012) Short-Term, Long-Term and Paracrine Effect of Human Umbilical Cord-Derived Stem Cells in Lung Injury Prevention and Repair in Experimental Bronchopulmonary Dysplasia. Thorax, 68, 475-484. https://doi.org/10.1136/thoraxjnl-2012-202323
|
|
[92]
|
Chou, H.C., Li, Y.T. and Chen, C.M. (2016) Human Mesenchymal Stem Cells Attenuate Experimental Bronchopulmonary Dysplasia Induced by Perinatal Inflammation and Hyperoxia. American Journal of Translational Research, 8, 342-353.
|
|
[93]
|
Willis, G.R., Fernandez-Gonzalez, A., Anastas, J., Vitali, S.H., Liu, X., Ericsson, M., et al. (2018) Mesenchymal Stromal Cell Exosomes Ameliorate Experimental Bronchopulmonary Dysplasia and Restore Lung Function through Macrophage Immunomodulation. American Journal of Respiratory and Critical Care Medicine, 197, 104-116. https://doi.org/10.1164/rccm.201705-0925oc
|
|
[94]
|
Chang, Y.S., Ahn, S.Y., Yoo, H.S., Sung, S.I., Choi, S.J., Oh, W.I., et al. (2014) Mesenchymal Stem Cells for Bronchopulmonary Dysplasia: Phase 1 Dose-Escalation Clinical Trial. The Journal of Pediatrics, 164, 966-972.E6. https://doi.org/10.1016/j.jpeds.2013.12.011
|
|
[95]
|
Ahn, S.Y., Chang, Y.S., Kim, J.H., Sung, S.I. and Park, W.S. (2017) Two-Year Follow-Up Outcomes of Premature Infants Enrolled in the Phase I Trial of Mesenchymal Stem Cells Transplantation for Bronchopulmonary Dysplasia. The Journal of Pediatrics, 185, 49-54.E2. https://doi.org/10.1016/j.jpeds.2017.02.061
|
|
[96]
|
Yilmaz, A., Aslan, M.T., İnce, Z. and Vural, M. (2021) Mesenchymal Stem Cell Therapy in a Preterm Infant with Bronchopulmonary Dysplasia. Indian Journal of Pediatrics, 88, 1262-1262. https://doi.org/10.1007/s12098-021-03946-8
|
|
[97]
|
Głowińska-Olszewska, B., Szabłowski, M., Panas, P., Żoła̧dek, K., Jamiołkowska-Sztabkowska, M., Milewska, A.J., et al. (2020) Increasing Co-Occurrence of Additional Autoimmune Disorders at Diabetes Type 1 Onset among Children and Adolescents Diagnosed in Years 2010-2018-Single-Center Study. Frontiers in Endocrinology, 11, Article 476. https://doi.org/10.3389/fendo.2020.00476
|
|
[98]
|
Samuels, H., Malov, M., Saha Detroja, T., Ben Zaken, K., Bloch, N., Gal-Tanamy, M., et al. (2022) Autoimmune Disease Classification Based on PubMed Text Mining. Journal of Clinical Medicine, 11, Article 4345. https://doi.org/10.3390/jcm11154345
|
|
[99]
|
Eaton, W.W., Rose, N.R., Kalaydjian, A., Pedersen, M.G. and Mortensen, P.B. (2007) Epidemiology of Autoimmune Diseases in Denmark. Journal of Autoimmunity, 29, 1-9. https://doi.org/10.1016/j.jaut.2007.05.002
|
|
[100]
|
Jung, S.M. and Kim, W. (2022) Targeted Immunotherapy for Autoimmune Disease. Immune Network, 22, e9. https://doi.org/10.4110/in.2022.22.e9
|
|
[101]
|
Rosenblum, M.D., Gratz, I.K., Paw, J.S. and Abbas, A.K. (2012) Treating Human Autoimmunity: Current Practice and Future Prospects. Science Translational Medicine, 4, 125sr1. https://doi.org/10.1126/scitranslmed.3003504
|
|
[102]
|
Zaripova, L.N., Midgley, A., Christmas, S.E., Beresford, M.W., Pain, C., Baildam, E.M., et al. (2023) Mesenchymal Stem Cells in the Pathogenesis and Therapy of Autoimmune and Autoinflammatory Diseases. International Journal of Molecular Sciences, 24, Article 16040. https://doi.org/10.3390/ijms242216040
|
|
[103]
|
Wang, D., Zhang, H., Liang, J., Wang, H., Hua, B., Feng, X., et al. (2018) A Long-Term Follow-Up Study of Allogeneic Mesenchymal Stem/Stromal Cell Transplantation in Patients with Drug-Resistant Systemic Lupus Erythematosus. Stem Cell Reports, 10, 933-941. https://doi.org/10.1016/j.stemcr.2018.01.029
|
|
[104]
|
Ravelli, A. and Martini, A. (2007) Juvenile Idiopathic Arthritis. The Lancet, 369, 767-778. https://doi.org/10.1016/s0140-6736(07)60363-8
|
|
[105]
|
Jiang, W. and Xu, J. (2019) Immune Modulation by Mesenchymal Stem Cells. Cell Proliferation, 53, e12712. https://doi.org/10.1111/cpr.12712
|
|
[106]
|
Wong, S.C., Medrano, L.C., Hoftman, A.D., Jones, O.Y. and McCurdy, D.K. (2021) Uncharted Waters: Mesenchymal Stem Cell Treatment for Pediatric Refractory Rheumatic Diseases; A Single Center Case Series. Pediatric Rheumatology, 19, Article No. 87. https://doi.org/10.1186/s12969-021-00575-5
|
|
[107]
|
Wang, L., Zhang, Y., Li, H., Hong, J., Chen, X., Li, M., et al. (2015) Clinical Observation of Employment of Umbilical Cord Derived Mesenchymal Stem Cell for Juvenile Idiopathic Arthritis Therapy. Stem Cells International, 2016, Article ID: 9165267. https://doi.org/10.1155/2016/9165267
|
|
[108]
|
Ansboro, S., Roelofs, A.J. and De Bari, C. (2017) Mesenchymal Stem Cells for the Management of Rheumatoid Arthritis: Immune Modulation, Repair or Both? Current Opinion in Rheumatology, 29, 201-207. https://doi.org/10.1097/bor.0000000000000370
|
|
[109]
|
Swart, J.F., de Roock, S., Nievelstein, R.A.J., Slaper-Cortenbach, I.C.M., Boelens, J.J. and Wulffraat, N.M. (2019) Bone-Marrow Derived Mesenchymal Stromal Cells Infusion in Therapy Refractory Juvenile Idiopathic Arthritis Patients. Rheumatology, 58, 1812-1817. https://doi.org/10.1093/rheumatology/kez157
|
|
[110]
|
Park, S., Kang, Y., Koh, H. and Kim, S. (2020) Increasing Incidence of Inflammatory Bowel Disease in Children and Adolescents: Significance of Environmental Factors. Clinical and Experimental Pediatrics, 63, 337-344. https://doi.org/10.3345/cep.2019.00500
|
|
[111]
|
Yang, S., Yun, S., Kim, J., Park, J.Y., Kim, H.Y., Kim, Y., et al. (2008) Epidemiology of Inflammatory Bowel Disease in the Songpa-Kangdong District, Seoul, Korea, 1986-2005: A KASID Study. Inflammatory Bowel Diseases, 14, 542-549. https://doi.org/10.1002/ibd.20310
|
|
[112]
|
Van Limbergen, J., Russell, R.K., Drummond, H.E., Aldhous, M.C., Round, N.K., Nimmo, E.R., et al. (2008) Definition of Phenotypic Characteristics of Childhood-Onset Inflammatory Bowel Disease. Gastroenterology, 135, 1114-1122. https://doi.org/10.1053/j.gastro.2008.06.081
|
|
[113]
|
Sauer, C.G. and Kugathasan, S. (2009) Pediatric Inflammatory Bowel Disease: Highlighting Pediatric Differences in IBD. Gastroenterology Clinics of North America, 38, 611-628. https://doi.org/10.1016/j.gtc.2009.07.010
|
|
[114]
|
Kagia, A., Tzetis, M., Kanavakis, E., Perrea, D., Sfougataki, I., Mertzanian, A., et al. (2019) Therapeutic Effects of Mesenchymal Stem Cells Derived from Bone Marrow, Umbilical Cord Blood, and Pluripotent Stem Cells in a Mouse Model of Chemically Induced Inflammatory Bowel Disease. Inflammation, 42, 1730-1740. https://doi.org/10.1007/s10753-019-01033-x
|
|
[115]
|
Salem, G.A. and Selby, G.B. (2017) Stem Cell Transplant in Inflammatory Bowel Disease: A Promising Modality of Treatment for a Complicated Disease Course. Stem Cell Investigation, 4, 95-95. https://doi.org/10.21037/sci.2017.11.04
|
|
[116]
|
Mak, W.Y., Mak, O.S., Lee, C.K., Tang, W., Leung, W.K., Wong, M.T.L., et al. (2018) Significant Medical and Surgical Morbidity in Perianal Crohn’s Disease: Results from a Territory-Wide Study. Journal of Crohn’s and Colitis, 12, 1392-1398. https://doi.org/10.1093/ecco-jcc/jjy120
|
|
[117]
|
Panes, J., Reinisch, W., Rupniewska, E., Khan, S., Forns, J., Khalid, J.M., et al. (2018) Burden and Outcomes for Complex Perianal Fistulas in Crohn’s Disease: Systematic Review. World Journal of Gastroenterology, 24, 4821-4834. https://doi.org/10.3748/wjg.v24.i42.4821
|
|
[118]
|
Hawkey, C.J., Allez, M., Clark, M.M., Labopin, M., Lindsay, J.O., Ricart, E., et al. (2015) Autologous Hematopoetic Stem Cell Transplantation for Refractory Crohn Disease. JAMA, 314, 2524-2534. https://doi.org/10.1001/jama.2015.16700
|
|
[119]
|
Lindsay, J.O., Allez, M., Clark, M., Labopin, M., Ricart, E., Rogler, G., et al. (2017) Autologous Stem-Cell Transplantation in Treatment-Refractory Crohn’s Disease: An Analysis of Pooled Data from the ASTIC Trial. The Lancet Gastroenterology & Hepatology, 2, 399-406. https://doi.org/10.1016/s2468-1253(17)30056-0
|
|
[120]
|
Franco, D.L., Holubar, S.D., Lightner, A.L., Lashner, B.A. and Shen, B. (2018) Local Stem Cell Therapy for Crohn’s Perianal Fistulae. Inflammatory Bowel Diseases, 25, 816-819. https://doi.org/10.1093/ibd/izy362
|
|
[121]
|
Dietz, A.B., Dozois, E.J., Fletcher, J.G., Butler, G.W., Radel, D., Lightner, A.L., et al. (2017) Autologous Mesenchymal Stem Cells, Applied in a Bioabsorbable Matrix, for Treatment of Perianal Fistulas in Patients with Crohn’s Disease. Gastroenterology, 153, 59-62.E2. https://doi.org/10.1053/j.gastro.2017.04.001
|
|
[122]
|
Qiu, Y., Li, M., Feng, T., Feng, R., Mao, R., Chen, B., et al. (2017) Systematic Review with Meta-Analysis: The Efficacy and Safety of Stem Cell Therapy for Crohn’s Disease. Stem Cell Research & Therapy, 8, Article No. 136. https://doi.org/10.1186/s13287-017-0570-x
|
|
[123]
|
Lightner, A.L., Wang, Z., Zubair, A.C. and Dozois, E.J. (2018) A Systematic Review and Meta-Analysis of Mesenchymal Stem Cell Injections for the Treatment of Perianal Crohn’s Disease: Progress Made and Future Directions. Diseases of the Colon & Rectum, 61, 629-640. https://doi.org/10.1097/dcr.0000000000001093
|
|
[124]
|
Lightner, A.L., Dozois, E.J., Dietz, A.B., Fletcher, J.G., Friton, J., Butler, G., et al. (2019) Matrix-Delivered Autologous Mesenchymal Stem Cell Therapy for Refractory Rectovaginal Crohn’s Fistulas. Inflammatory Bowel Diseases, 26, 670-677. https://doi.org/10.1093/ibd/izz215
|
|
[125]
|
Ko, J.Z., Johnson, S. and Dave, M. (2021) Efficacy and Safety of Mesenchymal Stem/stromal Cell Therapy for Inflammatory Bowel Diseases: An Up-to-Date Systematic Review. Biomolecules, 11, Article 82. https://doi.org/10.3390/biom11010082
|
|
[126]
|
Farge, D., Loisel, S., Resche-Rigon, M., Lansiaux, P., Colmegna, I., Langlais, D., et al. (2022) Safety and Preliminary Efficacy of Allogeneic Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells for Systemic Sclerosis: A Single-Centre, Open-Label, Dose-Escalation, Proof-of-Concept, Phase 1/2 Study. The Lancet Rheumatology, 4, E91-E104. https://doi.org/10.1016/s2665-9913(21)00326-x
|
|
[127]
|
Kamphuis, S. and Silverman, E.D. (2010) Prevalence and Burden of Pediatric-Onset Systemic Lupus Erythematosus. Nature Reviews Rheumatology, 6, 538-546. https://doi.org/10.1038/nrrheum.2010.121
|
|
[128]
|
Hiraki, L.T., Benseler, S.M., Tyrrell, P.N., Harvey, E., Hebert, D. and Silverman, E.D. (2009) Ethnic Differences in Pediatric Systemic Lupus Erythematosus. The Journal of Rheumatology, 36, 2539-2546. https://doi.org/10.3899/jrheum.081141
|
|
[129]
|
Li, A., Guo, F., Pan, Q., Chen, S., Chen, J., Liu, H., et al. (2021) Mesenchymal Stem Cell Therapy: Hope for Patients with Systemic Lupus Erythematosus. Frontiers in Immunology, 12, Article 728190. https://doi.org/10.3389/fimmu.2021.728190
|
|
[130]
|
Pons-Estel, G.J., Alarcón, G.S., Scofield, L., Reinlib, L. and Cooper, G.S. (2010) Understanding the Epidemiology and Progression of Systemic Lupus Erythematosus. Seminars in Arthritis and Rheumatism, 39, 257-268. https://doi.org/10.1016/j.semarthrit.2008.10.007
|
|
[131]
|
Huang, X., Chen, W., Ren, G., Zhao, L., Guo, J., Gong, D., et al. (2019) Autologous Hematopoietic Stem Cell Transplantation for Refractory Lupus Nephritis. Clinical Journal of the American Society of Nephrology, 14, 719-727. https://doi.org/10.2215/cjn.10570918
|
|
[132]
|
Leng, X.M., Jiang, Y., Zhou, D.B., Tian, X.P., Li, T.S., Wang, S.J., Zhao, Y.Q., Shen, T., Zeng, X.F., Zhang, F.C., Tang, F.L., Dong, Y. and Zhao, Y. (2017) Good Outcome of Severe Lupus Patients with High-Dose Immunosuppressive Therapy and Autologous Peripheral Blood Stem Cell Transplantation: A 10-Year Follow-Up Study. Clinical and Experimental Rheumatology, 35, 494-499.
|
|
[133]
|
Sargent, B. (2013) Fifteen Cell Therapies/Stem Cell Therapies in Phase III Clinical Trials. Cell Culture Dish. https://cellculturedish.com/
|
|
[134]
|
Lukomska, B., Stanaszek, L., Zuba-Surma, E., Legosz, P., Sarzynska, S. and Drela, K. (2019) Challenges and Controversies in Human Mesenchymal Stem Cell Therapy. Stem Cells International, 2019, Article ID: 9628536. https://doi.org/10.1155/2019/9628536
|
|
[135]
|
Blum, B. and Benvenisty, N. (2008) The Tumorigenicity of Human Embryonic Stem Cells. In: Advances in Cancer Research, Elsevier, 133-158. https://doi.org/10.1016/s0065-230x(08)00005-5
|
|
[136]
|
Green, R.M. (2014) Ethical Considerations. In: Lanza, R. and Atala, A., Eds., Essentials of Stem Cell Biology, Elsevier, 595-604. https://doi.org/10.1016/b978-0-12-409503-8.00040-8
|
|
[137]
|
Brignier, A.C. and Gewirtz, A.M. (2010) Embryonic and Adult Stem Cell Therapy. Journal of Allergy and Clinical Immunology, 125, S336-S344. https://doi.org/10.1016/j.jaci.2009.09.032
|
|
[138]
|
Brown, C. (2012) Stem Cell Tourism Poses Risks. Canadian Medical Association Journal, 184, E121-E122. https://doi.org/10.1503/cmaj.109-4073
|
|
[139]
|
Turner, L. (2021) The American Stem Cell Sell in 2021: U.S. Businesses Selling Unlicensed and Unproven Stem Cell Interventions. Cell Stem Cell, 28, 1891-1895. https://doi.org/10.1016/j.stem.2021.10.008
|
|
[140]
|
Fujita, M., Hatta, T. and Ide, K. (2022) Current Status of Cell-Based Interventions in Japan. Cell Stem Cell, 29, 1294-1297. https://doi.org/10.1016/j.stem.2022.08.003
|
|
[141]
|
Konomi, K., Tobita, M., Kimura, K. and Sato, D. (2015) New Japanese Initiatives on Stem Cell Therapies. Cell Stem Cell, 16, 350-352. https://doi.org/10.1016/j.stem.2015.03.012
|
|
[142]
|
https://irosm.com/is-stem-cell-therapy-legal-in-the-united-states/
|
|
[143]
|
Reya, T., Morrison, S.J., Clarke, M.F. and Weissman, I.L. (2001) Stem Cells, Cancer, and Cancer Stem Cells. Nature, 414, 105-111. https://doi.org/10.1038/35102167
|
|
[144]
|
De Luca, M., Aiuti, A., Cossu, G., Parmar, M., Pellegrini, G. and Robey, P.G. (2019) Advances in Stem Cell Research and Therapeutic Development. Nature Cell Biology, 21, 801-811. https://doi.org/10.1038/s41556-019-0344-z
|
|
[145]
|
Fatani, A.Z., Bugshan, N.A., AlSayyad, H.M., Shafei, M.A., Hariri, N.M., Alrashid, L.T., et al. (2021) Causes of the Failure of Biological Therapy at a Tertiary Center: A Cross-Sectional Retrospective Study. Cureus, 13, e18253. https://doi.org/10.7759/cureus.18253
|
|
[146]
|
Gisbert, J.P., Marín, A.C., McNicholl, A.G. and Chaparro, M. (2015) Systematic Review with Meta‐Analysis: The Efficacy of a Second Anti‐TNF in Patients with Inflammatory Bowel Disease Whose Previous Anti‐TNF Treatment Has Failed. Alimentary Pharmacology & Therapeutics, 41, 613-623. https://doi.org/10.1111/apt.13083
|
|
[147]
|
Velikova, T., Sekulovski, M. and Peshevska-Sekulovska, M. (2024) Immunogenicity and Loss of Effectiveness of Biologic Therapy for Inflammatory Bowel Disease Patients Due to Anti-Drug Antibody Development. Antibodies, 13, Article 16. https://doi.org/10.3390/antib13010016
|
|
[148]
|
https://www.biospace.com/press-releases/biologics-market-size-to-reach-usd-699-5-billion-by-2032-impelled-by-emergence-of-advanced-drug-delivery-systems
|