[1]
|
GBD 2019 Mental Disorders Collaborators (2022) Global, Regional, and National Burden of 12 Mental Disorders in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet Psychiatry, 9, 137-150.
|
[2]
|
Sagar, R., Dandona, R., Gururaj, G., Dhaliwal, R.S., Singh, A., Ferrari, A., et al. (2020) The Burden of Mental Disorders across the States of India: The Global Burden of Disease Study 1990-2017. The Lancet Psychiatry, 7, 148-161. https://doi.org/10.1016/s2215-0366(19)30475-4
|
[3]
|
Wittchen, H.U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M., Jönsson, B., et al. (2011) The Size and Burden of Mental Disorders and Other Disorders of the Brain in Europe 2010. European Neuropsychopharmacology, 21, 655-679. https://doi.org/10.1016/j.euroneuro.2011.07.018
|
[4]
|
IsHak, W.W., Brown, K., Aye, S.S., Kahloon, M., Mobaraki, S. and Hanna, R. (2012) Health‐Related Quality of Life in Bipolar Disorder. Bipolar Disorders, 14, 6-18. https://doi.org/10.1111/j.1399-5618.2011.00969.x
|
[5]
|
Rose, M. and Devine, J. (2014) Assessment of Patient-Reported Symptoms of Anxiety. Dialogues in Clinical Neuroscience, 16, 197-211. https://doi.org/10.31887/dcns.2014.16.2/mrose
|
[6]
|
Gilbert, A., Sebag-Montefiore, D., Davidson, S. and Velikova, G. (2015) Use of Patient-Reported Outcomes to Measure Symptoms and Health Related Quality of Life in the Clinic. Gynecologic Oncology, 136, 429-439. https://doi.org/10.1016/j.ygyno.2014.11.071
|
[7]
|
Haberer, J.E., Trabin, T. and Klinkman, M. (2013) Furthering the Reliable and Valid Measurement of Mental Health Screening, Diagnoses, Treatment and Outcomes through Health Information Technology. General Hospital Psychiatry, 35, 349-353. https://doi.org/10.1016/j.genhosppsych.2013.03.009
|
[8]
|
Filippis, R.d. and Foysal, A.A. (2024) Harnessing the Power of Artificial Intelligence in Neuromuscular Disease Rehabilitation: A Comprehensive Review and Algorithmic Approach. Advances in Bioscience and Biotechnology, 15, 289-309. https://doi.org/10.4236/abb.2024.155018
|
[9]
|
Filippis, R.d. and Foysal, A.A. (2025) AI-Driven Early Warning and Risk Management System for Delirium in ICU Patients. Open Access Library Journal, 12, e12746.
|
[10]
|
Filippis, R.d. and Foysal, A.A. (2024) Integrating Explainable Artificial Intelligence (XAI) in Forensic Psychiatry: Opportunities and Challenges. Open Access Library Journal, 11, e12518.
|
[11]
|
Filippis, R.d. and Foysal, A.A. (2025) Predicting Bipolar Disorder Treatment Outcomes with Machine Learning: A Comprehensive Evaluation of Random Forest, Gradient Boosting, and Ensemble Approaches. Open Access Library Journal, 12, e12897.
|
[12]
|
Filippis, R.d. and Foysal, A.A. (2024) Securing Predictive Psychological Assessments: The Synergy of Blockchain Technology and Artificial Intelligence. Open Access Library Journal, 11, e12378.
|
[13]
|
Squara, S., et al. (2022) Realignment of Human Saliva Metabolites Patterns in a Diet-intervention Study: The Potential of GC × GC-TOF MS Combined to Finger-Printing to Unravel the Advanced Glycation End-Products Effects. In 7 MS Food Day Book of Abstracts, Divisione Spettrometria di Massa-Società Chimica Italiana, 341-343.
|
[14]
|
Filippis, R.d. and Foysal, A.A. (2025) Enhanced Predictive Modelling for Delirium in Intensive Care Using Simplified Deep Learning Architecture with Attention Mechanism. Open Access Library Journal, 12, e12745.
|
[15]
|
Filippis, R.d. and Foysal, A.A. (2024) Evaluating Pharmacological and Rehabilitation Strategies for Effective Management of Bipolar Disorder: A Comprehensive Clinical Study. Advances in Bioscience and Biotechnology, 15, 406-431. https://doi.org/10.4236/abb.2024.157025
|
[16]
|
Graham, S., Depp, C., Lee, E.E., Nebeker, C., Tu, X., Kim, H., et al. (2019) Artificial Intelligence for Mental Health and Mental Illnesses: An Overview. Current Psychiatry Reports, 21, Article No. 116.
|
[17]
|
Alowais, S.A., Alghamdi, S.S., Alsuhebany, N., Alqahtani, T., Alshaya, A.I., Almohareb, S.N., et al. (2023) Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Medical Education, 23, Article No. 689. https://doi.org/10.1186/s12909-023-04698-z
|
[18]
|
Lee, E.E., Torous, J., De Choudhury, M., Depp, C.A., Graham, S.A., Kim, H., et al. (2021) Artificial Intelligence for Mental Health Care: Clinical Applications, Barriers, Facilitators, and Artificial Wisdom. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6, 856-864. https://doi.org/10.1016/j.bpsc.2021.02.001
|
[19]
|
Ebner-Priemer, U.W. and Trull, T.J. (2009) Ambulatory Assessment: An Innovative and Promising Approach for Clinical Psychology. European Psychologist, 14, 109-119. https://doi.org/10.1027/1016-9040.14.2.109
|
[20]
|
Piasecki, T.M., Hufford, M.R., Solhan, M. and Trull, T.J. (2007) Assessing Clients in Their Natural Environments with Electronic Diaries: Rationale, Benefits, Limitations, and Barriers. Psychological Assessment, 19, 25-43. https://doi.org/10.1037/1040-3590.19.1.25
|
[21]
|
Górriz, J.M., Álvarez-Illán, I., Álvarez-Marquina, A., Arco, J.E., Atzmueller, M., Ballarini, F., et al. (2023) Computational Approaches to Explainable Artificial Intelligence: Advances in Theory, Applications and Trends. Information Fusion, 100, Article ID: 101945. https://doi.org/10.1016/j.inffus.2023.101945
|
[22]
|
Mengi, M. and Malhotra, D. (2021) Artificial Intelligence Based Techniques for the Detection of Socio-Behavioral Disorders: A Systematic Review. Archives of Computational Methods in Engineering, 29, 2811-2855. https://doi.org/10.1007/s11831-021-09682-8
|
[23]
|
Thieme, A., Belgrave, D. and Doherty, G. (2020) Machine Learning in Mental Health: A Systematic Review of the HCI Literature to Support the Development of Effective and Implementable ML Systems. ACM Transactions on Computer-Human Interaction, 27, 1-53. https://doi.org/10.1145/3398069
|
[24]
|
Zhang, Z., Lin, W., Liu, M. and Mahmoud, M. (2020). Multimodal Deep Learning Framework for Mental Disorder Recognition. 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), Buenos Aires, 16-20 November 2020, 344-350. https://doi.org/10.1109/fg47880.2020.00033
|
[25]
|
Khanbhai, M., Warren, L., Symons, J., Flott, K., Harrison-White, S., Manton, D., et al. (2022) Using Natural Language Processing to Understand, Facilitate and Maintain Continuity in Patient Experience across Transitions of Care. International Journal of Medical Informatics, 157, Article ID: 104642. https://doi.org/10.1016/j.ijmedinf.2021.104642
|
[26]
|
Minaee, S., Minaei, M. and Abdolrashidi, A. (2021) Deep-Emotion: Facial Expression Recognition Using Attentional Convolutional Network. Sensors, 21, Article No. 3046. https://doi.org/10.3390/s21093046
|
[27]
|
Li, S. and Deng, W. (2022) Deep Facial Expression Recognition: A Survey. IEEE Transactions on Affective Computing, 13, 1195-1215. https://doi.org/10.1109/taffc.2020.2981446
|
[28]
|
Koutsouleris, N., Hauser, T.U., Skvortsova, V. and De Choudhury, M. (2022) From Promise to Practice: Towards the Realisation of AI-Informed Mental Health Care. The Lancet Digital Health, 4, e829-e840. https://doi.org/10.1016/s2589-7500(22)00153-4
|
[29]
|
Singh, H., Mhasawade, V. and Chunara, R. (2022) Generalizability Challenges of Mortality Risk Prediction Models: A Retrospective Analysis on a Multi-Center Database. PLOS Digital Health, 1, e0000023. https://doi.org/10.1371/journal.pdig.0000023
|
[30]
|
Navarro, C.L.A., et al. (2021) Risk of Bias in Studies on Prediction Models Developed Using Supervised Machine Learning Techniques: Systematic Review. BMJ, 375, n2281.
|
[31]
|
Gooding, P. and Kariotis, T. (2021) Ethics and Law in Research on Algorithmic and Data-Driven Technology in Mental Health Care: Scoping Review. JMIR Mental Health, 8, e24668. https://doi.org/10.2196/24668
|
[32]
|
Timmons, A.C., Duong, J.B., Simo Fiallo, N., Lee, T., Vo, H.P.Q., Ahle, M.W., et al. (2022) A Call to Action on Assessing and Mitigating Bias in Artificial Intelligence Applications for Mental Health. Perspectives on Psychological Science, 18, 1062-1096. https://doi.org/10.1177/17456916221134490
|
[33]
|
Wies, B., Landers, C. and Ienca, M. (2021) Digital Mental Health for Young People: A Scoping Review of Ethical Promises and Challenges. Frontiers in Digital Health, 3, Article ID: 697072. https://doi.org/10.3389/fdgth.2021.697072
|
[34]
|
Rane, N., Choudhary, S. and Rane, J. (2023) Explainable Artificial Intelligence (XAI) in Healthcare: Interpretable Models for Clinical Decision Support. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4637897
|
[35]
|
Filippis, R.d. and Foysal, A.A. (2024) Blockchain Brains: Pioneering AI, ML, and DLT Solutions for Healthcare and Psychology. Open Access Library Journal, 11, e12543.
|
[36]
|
Obaid, H.S., Dheyab, S.A. and Sabry, S.S. (2019). The Impact of Data Pre-Processing Techniques and Dimensionality Reduction on the Accuracy of Machine Learning. 2019 9th Annual Information Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON), Jaipur, 13-15 March 2019, 279-283. https://doi.org/10.1109/iemeconx.2019.8877011
|
[37]
|
Maharana, K., Mondal, S. and Nemade, B. (2022) A Review: Data Pre-Processing and Data Augmentation Techniques. Global Transitions Proceedings, 3, 91-99. https://doi.org/10.1016/j.gltp.2022.04.020
|
[38]
|
Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B. and Tabona, O. (2021) A Survey on Missing Data in Machine Learning. Journal of Big Data, 8, Article No. 140. https://doi.org/10.1186/s40537-021-00516-9
|
[39]
|
Jerez, J.M., Molina, I., García-Laencina, P.J., Alba, E., Ribelles, N., Martín, M., et al. (2010) Missing Data Imputation Using Statistical and Machine Learning Methods in a Real Breast Cancer Problem. Artificial Intelligence in Medicine, 50, 105-115. https://doi.org/10.1016/j.artmed.2010.05.002
|
[40]
|
Lopez-Arevalo, I., Aldana-Bobadilla, E., Molina-Villegas, A., Galeana-Zapién, H., Muñiz-Sanchez, V. and Gausin-Valle, S. (2020) A Memory-Efficient Encoding Method for Processing Mixed-Type Data on Machine Learning. Entropy, 22, Article No. 1391. https://doi.org/10.3390/e22121391
|
[41]
|
Izonin, I., Tkachenko, R., Shakhovska, N., Ilchyshyn, B. and Singh, K.K. (2022) A Two-Step Data Normalization Approach for Improving Classification Accuracy in the Medical Diagnosis Domain. Mathematics, 10, Article No. 1942. https://doi.org/10.3390/math10111942
|
[42]
|
Mohamed, E.S., Naqishbandi, T.A., Bukhari, S.A.C., Rauf, I., Sawrikar, V. and Hussain, A. (2023) A Hybrid Mental Health Prediction Model Using Support Vector Machine, Multilayer Perceptron, and Random Forest Algorithms. Healthcare Analytics, 3, Article ID: 100185. https://doi.org/10.1016/j.health.2023.100185
|
[43]
|
Elshawi, R., Al-Mallah, M.H. and Sakr, S. (2019) On the Interpretability of Machine Learning-Based Model for Predicting Hypertension. BMC Medical Informatics and Decision Making, 19, Article No. 146. https://doi.org/10.1186/s12911-019-0874-0
|
[44]
|
Ren, Y., Lu, C., Yang, H., Ma, Q., Barnhart, W.R., Zhou, J., et al. (2022) Using Machine Learning to Explore Core Risk Factors Associated with the Risk of Eating Disorders among Non-Clinical Young Women in China: A Decision-Tree Classification Analysis. Journal of Eating Disorders, 10, Article No. 19. https://doi.org/10.1186/s40337-022-00545-6
|
[45]
|
Özçift, A. (2011) Random Forests Ensemble Classifier Trained with Data Resampling Strategy to Improve Cardiac Arrhythmia Diagnosis. Computers in Biology and Medicine, 41, 265-271. https://doi.org/10.1016/j.compbiomed.2011.03.001
|
[46]
|
Warner, B. and Misra, M. (1996) Understanding Neural Networks as Statistical Tools. The American Statistician, 50, 284-293. https://doi.org/10.1080/00031305.1996.10473554
|
[47]
|
Kruse, R., Mostaghim, S., Borgelt, C., Braune, C. and Steinbrecher, M. (2022) Multi-layer Perceptrons. In: Kruse, R., et al., Eds., Computational Intelligence: A Methodological Introduction, Springer International Publishing, 53-124. https://doi.org/10.1007/978-3-030-42227-1_5
|
[48]
|
Kaur, S., Aggarwal, H. and Rani, R. (2020) Hyper-Parameter Optimization of Deep Learning Model for Prediction of Parkinson’s Disease. Machine Vision and Applications, 31, Article No. 32. https://doi.org/10.1007/s00138-020-01078-1
|
[49]
|
Yates, L.A., Aandahl, Z., Richards, S.A. and Brook, B.W. (2023) Cross Validation for Model Selection: A Review with Examples from Ecology. Ecological Monographs, 93, e1557. https://doi.org/10.1002/ecm.1557
|
[50]
|
Stuart, E.A., Bradshaw, C.P. and Leaf, P.J. (2014) Assessing the Generalizability of Randomized Trial Results to Target Populations. Prevention Science, 16, 475-485. https://doi.org/10.1007/s11121-014-0513-z
|
[51]
|
Boehm, K.M., Khosravi, P., Vanguri, R., Gao, J. and Shah, S.P. (2021) Harnessing Multimodal Data Integration to Advance Precision Oncology. Nature Reviews Cancer, 22, 114-126. https://doi.org/10.1038/s41568-021-00408-3
|
[52]
|
Woo, C., Chang, L.J., Lindquist, M.A. and Wager, T.D. (2017) Building Better Biomarkers: Brain Models in Translational Neuroimaging. Nature Neuroscience, 20, 365-377. https://doi.org/10.1038/nn.4478
|
[53]
|
Zhou, L., Pan, S., Wang, J. and Vasilakos, A.V. (2017) Machine Learning on Big Data: Opportunities and Challenges. Neurocomputing, 237, 350-361. https://doi.org/10.1016/j.neucom.2017.01.026
|
[54]
|
Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K., Kalinin, A.A., Do, B.T., Way, G.P., et al. (2018) Opportunities and Obstacles for Deep Learning in Biology and Medicine. Journal of the Royal Society Interface, 15, Article ID: 20170387. https://doi.org/10.1098/rsif.2017.0387
|
[55]
|
Albahri, A.S., Duhaim, A.M., Fadhel, M.A., Alnoor, A., Baqer, N.S., Alzubaidi, L., et al. (2023) A Systematic Review of Trustworthy and Explainable Artificial Intelligence in Healthcare: Assessment of Quality, Bias Risk, and Data Fusion. Information Fusion, 96, 156-191. https://doi.org/10.1016/j.inffus.2023.03.008
|
[56]
|
Sadeghi, Z., Alizadehsani, R., Cifci, M.A., Kausar, S., Rehman, R., Mahanta, P., et al. (2024) A Review of Explainable Artificial Intelligence in Healthcare. Computers and Electrical Engineering, 118, Article ID: 109370. https://doi.org/10.1016/j.compeleceng.2024.109370
|
[57]
|
Hulsen, T. (2023) Explainable Artificial Intelligence (XAI): Concepts and Challenges in Healthcare. AI, 4, 652-666. https://doi.org/10.3390/ai4030034
|
[58]
|
Altaf Dar, M., Maqbool, M., Ara, I. and Zehravi, M. (2023) The Intersection of Technology and Mental Health: Enhancing Access and Care. International Journal of Adolescent Medicine and Health, 35, 423-428. https://doi.org/10.1515/ijamh-2023-0113
|
[59]
|
Nasarian, E., Alizadehsani, R., Acharya, U.R. and Tsui, K. (2024) Designing Interpretable ML System to Enhance Trust in Healthcare: A Systematic Review to Proposed Responsible Clinician-AI-Collaboration Framework. Information Fusion, 108, Article ID: 102412. https://doi.org/10.1016/j.inffus.2024.102412
|
[60]
|
Antoniadi, A.M., Du, Y., Guendouz, Y., Wei, L., Mazo, C., Becker, B.A., et al. (2021) Current Challenges and Future Opportunities for XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review. Applied Sciences, 11, Article No. 5088. https://doi.org/10.3390/app11115088
|
[61]
|
Jeong, H., Jeong, Y.W., Park, Y., Kim, K., Park, J. and Kang, D.R. (2022) Applications of Deep Learning Methods in Digital Biomarker Research Using Noninvasive Sensing Data. Digital Health, 8. https://doi.org/10.1177/20552076221136642
|
[62]
|
Chen, X., Xie, H., Tao, X., Wang, F.L., Leng, M. and Lei, B. (2024) Artificial Intelligence and Multimodal Data Fusion for Smart Healthcare: Topic Modeling and Bibliometrics. Artificial Intelligence Review, 57, Article No. 91. https://doi.org/10.1007/s10462-024-10712-7
|
[63]
|
Olawade, D.B., Wada, O.Z., Odetayo, A., David-Olawade, A.C., Asaolu, F. and Eberhardt, J. (2024) Enhancing Mental Health with Artificial Intelligence: Current Trends and Future Prospects. Journal of Medicine, Surgery, and Public Health, 3, Article ID: 100099. https://doi.org/10.1016/j.glmedi.2024.100099
|