[1]
|
Guo, Z., Zhou, K., Zhang, C., Lu, X., Chen, W. and Yang, S. (2018) Residential Electricity Consumption Behavior: Influencing Factors, Related Theories and Intervention Strategies. Renewable and Sustainable Energy Reviews, 81, 399-412. https://doi.org/10.1016/j.rser.2017.07.046
|
[2]
|
Hassan, Q., Abdulateef, A.M., Hafedh, S.A., Al-samari, A., Abdulateef, J., Sameen, A.Z., et al. (2023) Renewable Energy-to-Green Hydrogen: A Review of Main Resources Routes, Processes and Evaluation. International Journal of Hydrogen Energy, 48, 17383-17408. https://doi.org/10.1016/j.ijhydene.2023.01.175
|
[3]
|
Kalair, A., Abas, N., Saleem, M.S., Kalair, A.R. and Khan, N. (2020) Role of Energy Storage Systems in Energy Transition from Fossil Fuels to Renewables. Energy Storage, 3, e135. https://doi.org/10.1002/est2.135
|
[4]
|
Lior, N. (2010) Sustainable Energy Development: The Present (2009) Situation and Possible Paths to the Future. Energy, 35, 3976-3994. https://doi.org/10.1016/j.energy.2010.03.034
|
[5]
|
Ju, X., Xu, C., Hu, Y., Han, X., Wei, G. and Du, X. (2017) A Review on the Development of Photovoltaic/Concentrated Solar Power (PV-CSP) Hybrid Systems. Solar Energy Materials and Solar Cells, 161, 305-327. https://doi.org/10.1016/j.solmat.2016.12.004
|
[6]
|
Islam, M.T., Huda, N., Abdullah, A.B. and Saidur, R. (2018) A Comprehensive Review of State-of-the-Art Concentrating Solar Power (CSP) Technologies: Current Status and Research Trends. Renewable and Sustainable Energy Reviews, 91, 987-1018. https://doi.org/10.1016/j.rser.2018.04.097
|
[7]
|
Parida, B., Iniyan, S. and Goic, R. (2011) A Review of Solar Photovoltaic Technologies. Renewable and Sustainable Energy Reviews, 15, 1625-1636. https://doi.org/10.1016/j.rser.2010.11.032
|
[8]
|
Kannan, N. and Vakeesan, D. (2016) Solar Energy for Future World: A Review. Renewable and Sustainable Energy Reviews, 62, 1092-1105. https://doi.org/10.1016/j.rser.2016.05.022
|
[9]
|
Nsengiyumva, W., Chen, S.G., Hu, L. and Chen, X. (2018) Recent Advancements and Challenges in Solar Tracking Systems (STS): A Review. Renewable and Sustainable Energy Reviews, 81, 250-279. https://doi.org/10.1016/j.rser.2017.06.085
|
[10]
|
Lorilla, F.M.A. and Barroca, R. (2022) Challenges and Recent Developments in Solar Tracking Strategies for Concentrated Solar Parabolic Dish. Indonesian Journal of Electrical Engineering and Computer Science, 26, 1368-1378. https://doi.org/10.11591/ijeecs.v26.i3.pp1368-1378
|
[11]
|
Gu, W., Zhao, X., Yan, X., Wang, C. and Li, Q. (2019) Energy Technological Progress, Energy Consumption, and CO2 Emissions: Empirical Evidence from China. Journal of Cleaner Production, 236, Article 117666. https://doi.org/10.1016/j.jclepro.2019.117666
|
[12]
|
Höök, M. and Tang, X. (2013) Depletion of Fossil Fuels and Anthropogenic Climate Change—A Review. Energy Policy, 52, 797-809. https://doi.org/10.1016/j.enpol.2012.10.046
|
[13]
|
Abas, N., Kalair, A. and Khan, N. (2015) Review of Fossil Fuels and Future Energy Technologies. Futures, 69, 31-49. https://doi.org/10.1016/j.futures.2015.03.003
|
[14]
|
Holechek, J.L., Geli, H.M.E., Sawalhah, M.N. and Valdez, R. (2022) A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability, 14, Article 4792. https://doi.org/10.3390/su14084792
|
[15]
|
Hayat, M.B., Ali, D., Monyake, K.C., Alagha, L. and Ahmed, N. (2018) Solar Energy—A Look into Power Generation, Challenges, and a Solar-Powered Future. International Journal of Energy Research, 43, 1049-1067. https://doi.org/10.1002/er.4252
|
[16]
|
Yekinni, S., Asiata, I., Hakeem, O. and Mubarak, L. (2023) Solar Photovoltaic Energy System. In: Nanogenerators and Self-Powered Systems, Intech Open, 1-15. https://doi.org/10.5772/intechopen.108958
|
[17]
|
Panwar, N.L., Kaushik, S.C. and Kothari, S. (2011) Role of Renewable Energy Sources in Environmental Protection: A Review. Renewable and Sustainable Energy Reviews, 15, 1513-1524. https://doi.org/10.1016/j.rser.2010.11.037
|
[18]
|
Kumar, C.M.S., Singh, S., Gupta, M.K., Nimdeo, Y.M., Raushan, R., Deorankar, A.V., et al. (2023) Solar Energy: A Promising Renewable Source for Meeting Energy Demand in Indian Agriculture Applications. Sustainable Energy Technologies and Assessments, 55, Article 102905. https://doi.org/10.1016/j.seta.2022.102905
|
[19]
|
Singh, G.K. (2013) Solar Power Generation by PV (Photovoltaic) Technology: A Review. Energy, 53, 1-13. https://doi.org/10.1016/j.energy.2013.02.057
|
[20]
|
Solanki, C.S. (2015) Solar Photovoltaics: Fundamentals, Technologies and Applica-tions. PHI Learning Ltd.
|
[21]
|
Bayod-Rújula, A.A. (2019) Solar Photovoltaics (PV). In: Solar Hydrogen Production, Elsevier, 237-295. https://doi.org/10.1016/b978-0-12-814853-2.00008-4
|
[22]
|
Ya’u Muhammad, J., Tajudeen Jimoh, M., Baba Kyari, I., Abdullahi Gele, M. and Musa, I. (2019) A Review on Solar Tracking System: A Technique of Solar Power Output Enhancement. Engineering Science, 4, 1-11. https://doi.org/10.11648/j.es.20190401.11
|
[23]
|
Mousazadeh, H., Keyhani, A., Javadi, A., Mobli, H., Abrinia, K. and Sharifi, A. (2009) A Review of Principle and Sun-Tracking Methods for Maximizing Solar Systems Output. Renewable and Sustainable Energy Reviews, 13, 1800-1818. https://doi.org/10.1016/j.rser.2009.01.022
|
[24]
|
Prinsloo, G. and Dobson, R.T. (2015) Solar Tracking. Solar Books.
|
[25]
|
Singh, R., Kumar, S., Gehlot, A. and Pachauri, R. (2018) An Imperative Role of Sun Trackers in Photovoltaic Technology: A Review. Renewable and Sustainable Energy Reviews, 82, 3263-3278. https://doi.org/10.1016/j.rser.2017.10.018
|
[26]
|
Awasthi, A., Shukla, A.K., S.R., M.M., Dondariya, C., Shukla, K.N., Porwal, D., et al. (2020) Review on Sun Tracking Technology in Solar PV System. Energy Reports, 6, 392-405. https://doi.org/10.1016/j.egyr.2020.02.004
|
[27]
|
Abro, A.A., Bano, S., Tariq, U. and Shah, I.A. (2022) Sun Tracking and Control Design for PV Solar Energy System. International Journal of Innovations in Science and Technology, 4, 77-93. https://doi.org/10.33411/ijist/2022040507
|
[28]
|
Safan, Y.M., Shaaban, S. and Abu El-Sebah, M.I. (2018) Performance Evaluation of a Multi-Degree of Freedom Hybrid Controlled Dual Axis Solar Tracking System. Solar Energy, 170, 576-585. https://doi.org/10.1016/j.solener.2018.06.011
|
[29]
|
Oner, Y., Cetin, E., Ozturk, H.K. and Yilanci, A. (2009) Design of a New Three-Degree of Freedom Spherical Motor for Photovoltaic-Tracking Systems. Renewable Energy, 34, 2751-2756. https://doi.org/10.1016/j.renene.2009.04.025
|
[30]
|
Xu, L., Long, E., Wei, J., Cheng, Z. and Zheng, H. (2021) A New Approach to Determine the Optimum Tilt Angle and Orientation of Solar Collectors in Mountainous Areas with High Altitude. Energy, 237, Article 121507. https://doi.org/10.1016/j.energy.2021.121507
|
[31]
|
Alexandru, C. (2024) Simulation and Optimization of a Dual-Axis Solar Tracking Mechanism. Mathematics, 12, Article 1034. https://doi.org/10.3390/math12071034
|
[32]
|
Yao, Y., Hu, Y., Gao, S., Yang, G. and Du, J. (2014) A Multipurpose Dual-Axis Solar Tracker with Two Tracking Strategies. Renewable Energy, 72, 88-98. https://doi.org/10.1016/j.renene.2014.07.002
|
[33]
|
Zhou, H., Xu, J., Liu, X., Zhang, H., Wang, D., Chen, Z., et al. (2017) Bio-Inspired Photonic Materials: Prototypes and Structural Effect Designs for Applications in Solar Energy Manipulation. Advanced Functional Materials, 28, Article 1705309. https://doi.org/10.1002/adfm.201705309
|
[34]
|
Bhattacharjee, J. and Roy, S. (2024) Smart Materials for Sustainable Energy. Natural Resources Conservation and Research, 7, Article 5536. https://doi.org/10.24294/nrcr.v7i1.5536
|
[35]
|
Verma, B.D., Gour, A. and Pandey, M. (2020) A Review Paper on Solar Tracking System for Photovoltaic Power Plant. International Journal of Engineering Research & Technology, 9, 160-166.
|
[36]
|
Lorenzo, E. (2011). Energy Collected and Delivered by PV Modules. In: Handbook of Photovoltaic Science and Engineering, Wiley, 984-1042.
|
[37]
|
Shahsavari, A. and Akbari, M. (2018) Potential of Solar Energy in Developing Countries for Reducing Energy-Related Emissions. Renewable and Sustainable Energy Reviews, 90, 275-291. https://doi.org/10.1016/j.rser.2018.03.065
|
[38]
|
Jacobson, M.Z. and Delucchi, M.A. (2011) Providing All Global Energy with Wind, Water, and Solar Power, Part I: Technologies, Energy Resources, Quantities and Areas of Infrastructure, and Materials. Energy Policy, 39, 1154-1169. https://doi.org/10.1016/j.enpol.2010.11.040
|
[39]
|
Munro, P.G. and Samarakoon, S. (2022) Off-Grid Electrical Urbanism: Emerging Solar Energy Geographies in Ordinary Cities. Journal of Urban Technology, 30, 127-149. https://doi.org/10.1080/10630732.2022.2068939
|
[40]
|
Nwaigwe, K.N., Mutabilwa, P. and Dintwa, E. (2019) An Overview of Solar Power (PV Systems) Integration into Electricity Grids. Materials Science for Energy Technologies, 2, 629-633. https://doi.org/10.1016/j.mset.2019.07.002
|
[41]
|
Venkateswari, R. and Sreejith, S. (2019) Factors Influencing the Efficiency of Photovoltaic System. Renewable and Sustainable Energy Reviews, 101, 376-394. https://doi.org/10.1016/j.rser.2018.11.012
|
[42]
|
Polman, A., Knight, M., Garnett, E.C., Ehrler, B. and Sinke, W.C. (2016) Photovoltaic Materials: Present Efficiencies and Future Challenges. Science, 352, aad4424. https://doi.org/10.1126/science.aad4424
|
[43]
|
Pastuszak, J. and Węgierek, P. (2022) Photovoltaic Cell Generations and Current Research Directions for Their Development. Materials, 15, Article 5542. https://doi.org/10.3390/ma15165542
|
[44]
|
Maalouf, A., Okoroafor, T., Jehl, Z., Babu, V. and Resalati, S. (2023) A Comprehensive Review on Life Cycle Assessment of Commercial and Emerging Thin-Film Solar Cell Systems. Renewable and Sustainable Energy Reviews, 186, Article 113652. https://doi.org/10.1016/j.rser.2023.113652
|
[45]
|
Singh, B.P., Goyal, S.K. and Kumar, P. (2021) Solar PV Cell Materials and Technologies: Analyzing the Recent Developments. Materials Today: Proceedings, 43, 2843-2849. https://doi.org/10.1016/j.matpr.2021.01.003
|
[46]
|
Ramanujam, J. and Singh, U.P. (2017) Copper Indium Gallium Selenide Based Solar Cells—A Review. Energy & Environmental Science, 10, 1306-1319. https://doi.org/10.1039/c7ee00826k
|
[47]
|
Lamont, L.A. (2013) Third Generation Photovoltaic (PV) Cells for Eco-Efficient Buildings and Other Applications. In: Nanotechnology in Eco-Efficient Construction, Elsevier, 270-296. https://doi.org/10.1533/9780857098832.2.270
|
[48]
|
Jasim, K.E. (2011) Dye Sensitized Solar Cells-Working Principles, Challenges and Opportunities. Solar Cells-Dye-Sensitized Devices, 8, 172Ā210.
|
[49]
|
Rehman, F., Syed, I.H., Khanam, S., Ijaz, S., Mehmood, H., Zubair, M., et al. (2023) Fourth-Generation Solar Cells: A Review. Energy Advances, 2, 1239-1262. https://doi.org/10.1039/d3ya00179b
|
[50]
|
Cao, X., Tan, C., Sindoro, M. and Zhang, H. (2017) Hybrid Micro-/Nano-Structures Derived from Metal-Organic Frameworks: Preparation and Applications in Energy Storage and Conversion. Chemical Society Reviews, 46, 2660-2677. https://doi.org/10.1039/c6cs00426a
|
[51]
|
Mehmood, H., Tauqeer, T. and Hussain, S. (2018) Recent Progress in Silicon-Based Solid-State Solar Cells. International Journal of Electronics, 105, 1568-1582. https://doi.org/10.1080/00207217.2018.1477191
|
[52]
|
Asim, N., Sopian, K., Ahmadi, S., Saeedfar, K., Alghoul, M.A., Saadatian, O., et al. (2012) A Review on the Role of Materials Science in Solar Cells. Renewable and Sustainable Energy Reviews, 16, 5834-5847. https://doi.org/10.1016/j.rser.2012.06.004
|
[53]
|
Huang, G., Curt, S.R., Wang, K. and Markides, C.N. (2020) Challenges and Opportunities for Nanomaterials in Spectral Splitting for High-Performance Hybrid Solar Photovoltaic-Thermal Applications: A Review. Nano Materials Science, 2, 183-203. https://doi.org/10.1016/j.nanoms.2020.03.008
|
[54]
|
Nowsherwan, G.A., Ali, Q., Ali, U.F., Ahmad, M., Khan, M. and Hussain, S.S. (2024) Advances in Organic Materials for Next-Generation Optoelectronics: Potential and Challenges. Organics, 5, 520-560. https://doi.org/10.3390/org5040028
|
[55]
|
Amano, H., Baines, Y., Beam, E., Borga, M., Bouchet, T., Chalker, P.R., et al. (2018) The 2018 Gan Power Electronics Roadmap. Journal of Physics D: Applied Physics, 51, Article 163001. https://doi.org/10.1088/1361-6463/aaaf9d
|
[56]
|
Wolden, C.A., Kurtin, J., Baxter, J.B., Repins, I., Shaheen, S.E., Torvik, J.T., et al. (2011) Photovoltaic Manufacturing: Present Status, Future Prospects, and Research Needs. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29, Article 030801. https://doi.org/10.1116/1.3569757
|
[57]
|
Dallaev, R., Pisarenko, T., Papež, N. and Holcman, V. (2023) Overview of the Current State of Flexible Solar Panels and Photovoltaic Materials. Materials, 16, Article 5839. https://doi.org/10.3390/ma16175839
|
[58]
|
Artz, J., Müller, T.E., Thenert, K., Kleinekorte, J., Meys, R., Sternberg, A., et al. (2017) Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chemical Reviews, 118, 434-504. https://doi.org/10.1021/acs.chemrev.7b00435
|
[59]
|
Baraneedharan, P., Sekar, S., Murugesan, S., Ahamada, D., Mohamed, S.A.B., Lee, Y., et al. (2024) Recent Advances and Remaining Challenges in Perovskite Solar Cell Components for Innovative Photovoltaics. Nanomaterials, 14, Article 1867. https://doi.org/10.3390/nano14231867
|
[60]
|
Njema, G.G., Kibet, J.K. and Ngari, S.M. (2024) A Review of Interface Engineering Characteristics for High Performance Perovskite Solar Cells. Measurement: Energy, 2, Article 100005. https://doi.org/10.1016/j.meaene.2024.100005
|
[61]
|
Fthenakis, V., Athias, C., Blumenthal, A., Kulur, A., Magliozzo, J. and Ng, D. (2020) Sustainability Evaluation of CDTE PV: An Update. Renewable and Sustainable Energy Reviews, 123, Article 109776. https://doi.org/10.1016/j.rser.2020.109776
|
[62]
|
Li, H. and Zhang, W. (2020) Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chemical Reviews, 120, 9835-9950. https://doi.org/10.1021/acs.chemrev.9b00780
|
[63]
|
Olatomiwa, A.L., Adam, T., Gopinath, S.C.B., Kolawole, S.Y., Olayinka, O.H. and Hashim, U. (2022) Graphene Synthesis, Fabrication, Characterization Based on Bottom-Up and Top-Down Approaches: An Overview. Journal of Semiconductors, 43, Article 061101. https://doi.org/10.1088/1674-4926/43/6/061101
|
[64]
|
Xu, Y. and Liu, J. (2016) Graphene as Transparent Electrodes: Fabrication and New Emerging Applications. Small, 12, 1400-1419. https://doi.org/10.1002/smll.201502988
|
[65]
|
Zheng, Q., Li, Z., Yang, J. and Kim, J. (2014) Graphene Oxide-Based Transparent Conductive Films. Progress in Materials Science, 64, 200-247. https://doi.org/10.1016/j.pmatsci.2014.03.004
|
[66]
|
Kofoworola, A.H., Olayinka, O.H., Joshua, A.A., Kofoworola, A.M., Ayinde, A.G., Adeyemi, A.U. and Yekeen, S. Fabrication, Characterization and Applications of Multiwall Carbon Nanotubes-Aluminium Oxide (MWCNTs-Al₂O₃) Ceramic Com-posites. International Journal of Research Publication and Reviews, 5, 1990-1993.
|
[67]
|
He, M., Jung, J., Qiu, F. and Lin, Z. (2012) Graphene-Based Transparent Flexible Electrodes for Polymer Solar Cells. Journal of Materials Chemistry, 22, Article 24254. https://doi.org/10.1039/c2jm33784c
|
[68]
|
Sidorenkov, N.S. (2005) Physics of the Earth’s Rotation Instabilities. Astronomical & Astrophysical Transactions, 24, 425-439. https://doi.org/10.1080/10556790600593506
|
[69]
|
Kittler, R. and Darula, S. (2013) Determination of Time and Sun Position System. Solar Energy, 93, 72-79. https://doi.org/10.1016/j.solener.2013.03.021
|
[70]
|
Gaudino, E., Anacreonte, A., Caldarelli, A., Strazzullo, P., Musto, M., Bianco, N. and Russo, R. (2024) Impact of Collector Array Orientation on the Performance of a Flat Collectors Field for Middle-Temperature Applications. Energy Proceedings, 46, 1-7.
|
[71]
|
Jenkins, A. (2013) The Sun’s Position in the Sky. European Journal of Physics, 34, 633-652. https://doi.org/10.1088/0143-0807/34/3/633
|
[72]
|
Avila, R. and Syed, S.R. (2024) On the Elliptical Orbit of the Earth and Position of the Sun in the Sky: An Engineering Approach. The Nucleus, 61, 10-15. https://doi.org/10.71330/thenucleus.2024.1330
|
[73]
|
Karathanasis, S. (2019) Solar Radiation. In: Linear Fresnel Reflector Systems for Solar Radiation Concentration, Springer, 13-72. https://doi.org/10.1007/978-3-030-05279-9_2
|
[74]
|
Rueda, J.A., Ramírez, S., Sánchez, M.A. and Guerrero, J.D.D. (2024) Sun Declination and Distribution of Natural Beam Irradiance on Earth. Atmosphere, 15, Article 1003. https://doi.org/10.3390/atmos15081003
|
[75]
|
Nwokolo, S.C., Obiwulu, A.U. and Ogbulezie, J.C. (2023) Machine Learning and Analytical Model Hybridization to Assess the Impact of Climate Change on Solar PV Energy Production. Physics and Chemistry of the Earth, Parts A/B/C, 130, Article 103389. https://doi.org/10.1016/j.pce.2023.103389
|
[76]
|
Nfaoui, M. and El-Hami, K. (2018) Optimal Tilt Angle and Orientation for Solar Photovoltaic Arrays: Case of Settat City in Morocco. International Journal of Ambient Energy, 41, 214-223. https://doi.org/10.1080/01430750.2018.1451375
|
[77]
|
Senpinar, A. (2018) Optimization of Slope Angles of Photovoltaic Arrays for Different Seasons. In: Exergetic, Energetic and Environmental Dimensions, Elsevier, 507-521. https://doi.org/10.1016/b978-0-12-813734-5.00028-7
|
[78]
|
Yousef, B.A.A., Radwan, A., Olabi, A.G. and Abdelkareem, M.A. (2023) Sun Composition, Solar Angles, and Estimation of Solar Radiation. In: Renewable Energy-Volume 1: Solar, Wind, and Hydropower, Elsevier, 3-22. https://doi.org/10.1016/b978-0-323-99568-9.00023-6
|
[79]
|
González-Rodríguez, L., Pérez, L., Fissore, A., Rodríguez-López, L. and Jimenez, J. (2018) Tilt and Orientation of a Flat Solar Collector to Capture Optimal Solar Irradiation in Chilean Latitudes. In: Proceedings of the 2nd International Conference on BioGeoSciences, Springer, 215-228. https://doi.org/10.1007/978-3-030-04233-2_19
|
[80]
|
Naeimi, Y., Kooben, F. and Moallem, M.H. (2020) Calculation of the Optimal Instal-lation Angle for Seasonal Adjusting of PV Panels Based on Solar Radiation Predic-tion.
|
[81]
|
Hariri, N.G., AlMutawa, M.A., Osman, I.S., AlMadani, I.K., Almahdi, A.M. and Ali, S. (2022) Experimental Investigation of Azimuth-and Sensor-Based Control Strategies for a PV Solar Tracking Application. Applied Sciences, 12, Article 4758. https://doi.org/10.3390/app12094758
|
[82]
|
Obiwulu, A.U., Erusiafe, N., Olopade, M.A. and Nwokolo, S.C. (2022) Modeling and Estimation of the Optimal Tilt Angle, Maximum Incident Solar Radiation, and Global Radiation Index of the Photovoltaic System. Heliyon, 8, e09598. https://doi.org/10.1016/j.heliyon.2022.e09598
|
[83]
|
Qiu, Z. and Li, P. (2019) Solar Energy Resource and Its Global Distribution. In: Green Energy and Technology, Springer, 1-30. https://doi.org/10.1007/978-3-030-17283-1_1
|
[84]
|
Ozdemir, S. and Sahin, G. (2018) Multi-Criteria Decision-Making in the Location Selection for a Solar PV Power Plant Using AHP. Measurement, 129, 218-226. https://doi.org/10.1016/j.measurement.2018.07.020
|
[85]
|
Cuerno, R. and Kim, J.-S. (2020) A Perspective on Nanoscale Pattern Formation at Surfaces by Ion-Beam Irradiation. Journal of Applied Physics, 128, Article 180902. https://doi.org/10.1063/5.0021308
|
[86]
|
Cao, B., Liu, Q., Du, Y., Roujean, J., Gastellu-Etchegorry, J., Trigo, I.F., et al. (2019) A Review of Earth Surface Thermal Radiation Directionality Observing and Modeling: Historical Development, Current Status and Perspectives. Remote Sensing of Environment, 232, Article 111304. https://doi.org/10.1016/j.rse.2019.111304
|
[87]
|
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., et al. (2018) Baseline Surface Radiation Network (BSRN): Structure and Data Description (1992-2017). Earth System Science Data, 10, 1491-1501. https://doi.org/10.5194/essd-10-1491-2018
|
[88]
|
Barbón, A., Bayón-Cueli, C., Bayón, L. and Rodríguez-Suanzes, C. (2022) Analysis of the Tilt and Azimuth Angles of Photovoltaic Systems in Non-Ideal Positions for Urban Applications. Applied Energy, 305, Article 117802. https://doi.org/10.1016/j.apenergy.2021.117802
|
[89]
|
Raisal, A.Y. and Rakhmadi, A.J. (2020) Understanding the Effect of Revolution and Rotation of the Earth on Prayer Times Using Accurate Times. Ulul Albab: Jurnal Studi dan Penelitian Hukum Islam, 4, 81-101. https://doi.org/10.30659/jua.v4i1.10936
|
[90]
|
Wald, L. (2009) Solar Radiation Energy (Fundamentals). In: Encyclopedia of Life Support System (EOLSS), Eolss Publishers, 44-99.
|
[91]
|
Sampson, R.D. (2001) A Comparison of Photogrammetrically Determined Astronomical Refraction of Sunlight at High Zenith Angles with a Ray-Tracing Computer Model Employing Rawlinson Profiles.
|
[92]
|
Goswami, D.Y. (2017) Solar Energy Resources. In: Energy Conversion, CRC Press, 85-136. https://doi.org/10.1201/9781315374192-6
|
[93]
|
Stieglitz, R. and Platzer, W. (2024) Solar Radiation. In: Solar Thermal Energy Systems, Springer, 29-120. https://doi.org/10.1007/978-3-031-43173-9_2
|
[94]
|
Fouad, M.M., Shihata, L.A. and Morgan, E.I. (2017) An Integrated Review of Factors Influencing the Perfomance of Photovoltaic Panels. Renewable and Sustainable Energy Reviews, 80, 1499-1511. https://doi.org/10.1016/j.rser.2017.05.141
|
[95]
|
Balogun, S.W., Oyeshola, H.O., Ajani, A.S., James, O.O., Awodele, M.K., Adewumi, H.K., et al. (2024) Synthesis, Characterization, and Optoelectronic Properties of Zinc Oxide Nanoparticles: A Precursor as Electron Transport Layer. Heliyon, 10, e29452. https://doi.org/10.1016/j.heliyon.2024.e29452
|
[96]
|
Zwinkels, J. (2015) Light, Electromagnetic Spectrum. In: Encyclopedia of Color Science and Technology, Springer, 1-8. https://doi.org/10.1007/978-3-642-27851-8_204-1
|
[97]
|
El Hammoumi, A., Chtita, S., Motahhir, S. and El Ghzizal, A. (2022) Solar PV Energy: From Material to Use, and the Most Commonly Used Techniques to Maximize the Power Output of PV Systems: A Focus on Solar Trackers and Floating Solar Panels. Energy Reports, 8, 11992-12010. https://doi.org/10.1016/j.egyr.2022.09.054
|
[98]
|
Shang, H. and Shen, W. (2023) Design and Implementation of a Dual-Axis Solar Tracking System. Energies, 16, Article 6330. https://doi.org/10.3390/en16176330
|
[99]
|
Alexandru, C. and Pozna, C. (2010) Simulation of a Dual-Axis Solar Tracker for Improving the Performance of a Photovoltaic Panel. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 224, 797-811. https://doi.org/10.1243/09576509jpe871
|
[100]
|
Prinsloo, G.J. (2014) Automatic Positioner and Control System for a Motorized Parabolic Solar. Energy, 82, 462-470.
|
[101]
|
Bourogaoui, M., Sethom, H.B.A. and Belkhodja, I.S. (2016) Speed/Position Sensor Fault Tolerant Control in Adjustable Speed Drives—A Review. ISA Transactions, 64, 269-284. https://doi.org/10.1016/j.isatra.2016.05.003
|
[102]
|
Terniuk, M.E., Kryvosheia, A.V., Ustynenko, O.V., Krasnoshtan, O.M. and Tkach, P.M. (2022) Multiparameter Gears and Gear-Type Variators. In: Advances in Gear Theory and Gear Cutting Tool Design, Springer, 361-443. https://doi.org/10.1007/978-3-030-92262-7_12
|
[103]
|
Bernasconi, P.N., Rust, D.M. and Hakim, D. (2005) Advanced Automated Solar Filament Detection and Characterization Code: Description, Performance, and Results. Solar Physics, 228, 97-117. https://doi.org/10.1007/s11207-005-2766-y
|
[104]
|
Celikel, O. and San, S.E. (2009) Establishment of All Digital Closed-Loop Interferometric Fiber-Optic Gyroscope and Scale Factor Comparison for Open-Loop and All Digital Closed-Loop Configurations. IEEE Sensors Journal, 9, 176-186. https://doi.org/10.1109/jsen.2008.2011066
|
[105]
|
Borovic, B., Liu, A.Q., Popa, D., Cai, H. and Lewis, F.L. (2005) Open-Loop versus Closed-Loop Control of MEMS Devices: Choices and Issues. Journal of Micromechanics and Microengineering, 15, 1917-1924. https://doi.org/10.1088/0960-1317/15/10/018
|
[106]
|
Zi-Yi, L., Sew-Kin, W., Wai-Leong, P. and Chee-Pun, O. (2012) The Design of DC Motor Driver for Solar Tracking Applications. 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, 19-21 September 2012, 556-559. https://doi.org/10.1109/smelec.2012.6417207
|
[107]
|
Rubio, F.R., Ortega, M.G., Gordillo, F. and López-Martínez, M. (2007) Application of New Control Strategy for Sun Tracking. Energy Conversion and Management, 48, 2174-2184. https://doi.org/10.1016/j.enconman.2006.12.020
|
[108]
|
Lee, C., Chou, P., Chiang, C. and Lin, C. (2009) Sun Tracking Systems: A Review. Sensors, 9, 3875-3890. https://doi.org/10.3390/s90503875
|
[109]
|
de Rubeis, T., Ragnoli, M., Leoni, A., Ambrosini, D. and Stornelli, V. (2024) A Proposal for a Human-in-the-Loop Daylight Control System—Preliminary Experimental Results. Energies, 17, Article 544. https://doi.org/10.3390/en17030544
|
[110]
|
Mohamed, A.K.B., Mohamed, H. and Yacob, N.S. (2024) Solar Tracking Control Systems Design Strategies: A Review. AIP Conference Proceedings, Langkawi, 20-21 December 2021, Article 020046. https://doi.org/10.1063/5.0182413
|
[111]
|
Sidek, M.H.M., Azis, N., Hasan, W.Z.W., Ab Kadir, M.Z.A., Shafie, S. and Radzi, M.A.M. (2017) Automated Positioning Dual-Axis Solar Tracking System with Precision Elevation and Azimuth Angle Control. Energy, 124, 160-170. https://doi.org/10.1016/j.energy.2017.02.001
|
[112]
|
AL-Rousan, N., Isa, N.A.M. and Desa, M.K.M. (2018) Advances in Solar Photovoltaic Tracking Systems: A Review. Renewable and Sustainable Energy Reviews, 82, 2548-2569. https://doi.org/10.1016/j.rser.2017.09.077
|
[113]
|
Ferdaus, R.A., Mohammed, M.A., Rahman, S., Salehin, S. and Mannan, M.A. (2014) Energy Efficient Hybrid Dual Axis Solar Tracking System. Journal of Renewable Energy, 2014, 1-12. https://doi.org/10.1155/2014/629717
|
[114]
|
Zhou, B., Ahn, D., Lee, J., Sun, C., Ahmed, S. and Kim, Y. (2018) A Passive Tracking System Based on Geometric Constraints in Adaptive Wireless Sensor Networks. Sensors, 18, Article 3276. https://doi.org/10.3390/s18103276
|
[115]
|
Alippi, C. and Galperti, C. (2008) An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes. IEEE Transactions on Circuits and Systems I: Regular Papers, 55, 1742-1750. https://doi.org/10.1109/tcsi.2008.922023
|
[116]
|
Racharla, S. and Rajan, K. (2017) Solar Tracking System—A Review. International Journal of Sustainable Engineering, 10, 72-81.
|
[117]
|
Tong, X.C. (2011) Advanced Materials for Thermal Management of Electronic Packaging (Vol. 30). Springer Science & Business Media.
|
[118]
|
Mushtaq, H., Khan, A. and Bhatti, H.N. (2024) Basics of Solar Energy Concentrators. Solar Energy Concentrators: Essentials and Applications, 1, 1-31.
|
[119]
|
Tilder, L. and Blostein, B. (2010) Design Ecologies: Sustainable Potentials in Architecture: Essays on the Nature of Design. Princeton Architectural Press.
|
[120]
|
Salgado-Conrado, L. (2018) A Review on Sun Position Sensors Used in Solar Applications. Renewable and Sustainable Energy Reviews, 82, 2128-2146. https://doi.org/10.1016/j.rser.2017.08.040
|
[121]
|
Chowdhury, M.E.H., Khandakar, A., Hossain, B. and Abouhasera, R. (2019) A Low-Cost Closed-Loop Solar Tracking System Based on the Sun Position Algorithm. Journal of Sensors, 2019, 1-11. https://doi.org/10.1155/2019/3681031
|
[122]
|
Dadi, V. and Peravali, S. (2020) Optimization of Light-Dependent Resistor Sensor for the Application of Solar Energy Tracking System. SN Applied Sciences, 2, Article No. 1499. https://doi.org/10.1007/s42452-020-03293-x
|
[123]
|
Chin, C.S. (2012) Model-Based Simulation of an Intelligent Microprocessor-Based Standalone Solar Tracking System. In: MATLAB—A Fundamental Tool for Scientific Computing and Engineering Applications-Volume 3, InTech, 251-278. https://doi.org/10.5772/46458
|
[124]
|
Solodovnik, E.V., Liu, S. and Dougal, R.A. (2004) Power Controller Design for Maximum Power Tracking in Solar Installations. IEEE Transactions on Power Electronics, 19, 1295-1304. https://doi.org/10.1109/tpel.2004.833457
|
[125]
|
Kumba, K., Upender, P., Buduma, P., Sarkar, M., Simon, S.P. and Gundu, V. (2024) Solar Tracking Systems: Advancements, Challenges, and Future Directions: A Review. Energy Reports, 12, 3566-3583. https://doi.org/10.1016/j.egyr.2024.09.038
|
[126]
|
Benzekri, A. and Azrar, A. (2014) FPGA-Based Design Process of a Fuzzy Logic Controller for a Dual-Axis Sun Tracking System. Arabian Journal for Science and Engineering, 39, 6109-6123. https://doi.org/10.1007/s13369-014-1213-5
|
[127]
|
Williams, B.C., Ingham, M.D., Chung, S.H. and Elliott, P.H. (2003) Model-Based Programming of Intelligent Embedded Systems and Robotic Space Explorers. Proceedings of the IEEE, 91, 212-237. https://doi.org/10.1109/jproc.2002.805828
|
[128]
|
Ray, S. and Tripathi, A.K. (2016) Design and Development of Tilted Single Axis and Azimuth-Altitude Dual Axis Solar Tracking Systems. 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, 4-6 July 2016, 1-6. https://doi.org/10.1109/icpeices.2016.7853190
|
[129]
|
Musa, A., Alozie, E., Suleiman, S.A., Ojo, J.A. and Imoize, A.L. (2023) A Review of Time-Based Solar Photovoltaic Tracking Systems. Information, 14, Article 211. https://doi.org/10.3390/info14040211
|
[130]
|
Afanasyeva, S., Bogdanov, D. and Breyer, C. (2018) Relevance of PV with Single-Axis Tracking for Energy Scenarios. Solar Energy, 173, 173-191. https://doi.org/10.1016/j.solener.2018.07.029
|
[131]
|
Karabiber, A. and Güneş, Y. (2023) Single-Motor and Dual-Axis Solar Tracking System for Micro Photovoltaic Power Plants. Journal of Solar Energy Engineering, 145, Article 051004. https://doi.org/10.1115/1.4056739
|
[132]
|
Varadharajan, D.P., Kumarasamy, S., Murugesan, R., Muthuramalingam, A., Venkatesan, M. and Nachimuthu, L. (2024) A Comprehensive Review on Single Axis Solar Tracking System Using Artificial Intelligence. In: Advances in Computer and Electrical Engineering, IGI Global, 1-22. https://doi.org/10.4018/979-8-3693-3735-6.ch001
|
[133]
|
Demirdelen, T., Alıcı, H., Esenboğa, B. and Güldürek, M. (2023) Performance and Economic Analysis of Designed Different Solar Tracking Systems for Mediterranean Climate. Energies, 16, Article 4197. https://doi.org/10.3390/en16104197
|
[134]
|
Kazem, H.A., Chaichan, M.T., Al-Waeli, A.H.A.H. and Sopian, K. (2024) Dual Axis Solar Photovoltaic Trackers: An In-Depth Review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46, 15331-15356. https://doi.org/10.1080/15567036.2024.2420781
|
[135]
|
Ukoba, K., Olatunji, K.O., Adeoye, E., Jen, T. and Madyira, D.M. (2024) Optimizing Renewable Energy Systems through Artificial Intelligence: Review and Future Prospects. Energy & Environment, 35, 3833-3879. https://doi.org/10.1177/0958305x241256293
|
[136]
|
Vieira, R.G., Guerra, F.K.O.M.V., Vale, M.R.B.G. and Araújo, M.M. (2016) Comparative Performance Analysis between Static Solar Panels and Single-Axis Tracking System on a Hot Climate Region Near to the Equator. Renewable and Sustainable Energy Reviews, 64, 672-681. https://doi.org/10.1016/j.rser.2016.06.089
|
[137]
|
Sumathi, V., Jayapragash, R., Bakshi, A. and Kumar Akella, P. (2017) Solar Tracking Methods to Maximize PV System Output—A Review of the Methods Adopted in Recent Decade. Renewable and Sustainable Energy Reviews, 74, 130-138. https://doi.org/10.1016/j.rser.2017.02.013
|
[138]
|
Vykhnevych, Y. (2024) Improving Solar Energy Efficiency through Tracking Systems: Advantages and Challenges. Věda a Perspektivy, 8.
|
[139]
|
Riley, D. and Hansen, C. (2015) Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations. Journal of Solar Energy Engineering, 137, Article 031008. https://doi.org/10.1115/1.4029379
|
[140]
|
Lim, B., Lim, C., Li, H., Hu, X., Chong, K., Zong, J., et al. (2020) Industrial Design and Implementation of a Large-Scale Dual-Axis Sun Tracker with a Vertical-Axis-Rotating-Platform and Multiple-Row-Elevation Structures. Solar Energy, 199, 596-616. https://doi.org/10.1016/j.solener.2020.02.006
|
[141]
|
Zayed, M.E., Zhao, J., Elsheikh, A.H., Li, W., Sadek, S. and Aboelmaaref, M.M. (2021) A Comprehensive Review on Dish/Stirling Concentrated Solar Power Systems: Design, Optical and Geometrical Analyses, Thermal Performance Assessment, and Applications. Journal of Cleaner Production, 283, Article 124664. https://doi.org/10.1016/j.jclepro.2020.124664
|
[142]
|
Kuttybay, N., Mekhilef, S., Koshkarbay, N., Saymbetov, A., Nurgaliyev, M., Dosymbetova, G., et al. (2024) Assessment of Solar Tracking Systems: A Comprehensive Review. Sustainable Energy Technologies and Assessments, 68, Article 103879. https://doi.org/10.1016/j.seta.2024.103879
|
[143]
|
Schuh, H. and Böhm, S. (2021) Earth Rotation. In: Encyclopedia of Earth Sciences Series, Springer, 149-155. https://doi.org/10.1007/978-3-030-58631-7_177
|
[144]
|
Ismail, F.B., Rahmat, M.A.A., Kazem, H.A., Al-Obaidi, A.S.M. and Ridwan, M.S. (2024) Maximizing Energy via Solar-Powered Smart Irrigation: An Approach Utilizing a Single-Axis Solar Tracking Mechanism. Irrigation and Drainage, 73, 829-845. https://doi.org/10.1002/ird.2937
|
[145]
|
Shufat, S.A.A., Kurt, E. and Hancerlioğulları, A. (2019) Modeling and Design of Azimuth-Altitude Dual Axis Solar Tracker for Maximum Solar Energy Generation. International Journal of Renewable Energy Development, 8, 7-13. https://doi.org/10.14710/ijred.8.1.7-13
|
[146]
|
Forootan, M.M., Larki, I., Zahedi, R. and Ahmadi, A. (2022) Machine Learning and Deep Learning in Energy Systems: A Review. Sustainability, 14, Article 4832. https://doi.org/10.3390/su14084832
|
[147]
|
Ahmad, T., Madonski, R., Zhang, D., Huang, C. and Mujeeb, A. (2022) Data-Driven Probabilistic Machine Learning in Sustainable Smart Energy/Smart Energy Systems: Key Developments, Challenges, and Future Research Opportunities in the Context of Smart Grid Paradigm. Renewable and Sustainable Energy Reviews, 160, Article 112128. https://doi.org/10.1016/j.rser.2022.112128
|
[148]
|
Kosovic, I.N., Mastelic, T. and Ivankovic, D. (2020) Using Artificial Intelligence on Environmental Data from Internet of Things for Estimating Solar Radiation: Comprehensive Analysis. Journal of Cleaner Production, 266, Article 121489. https://doi.org/10.1016/j.jclepro.2020.121489
|
[149]
|
Othman, M.F. and Shazali, K. (2012) Wireless Sensor Network Applications: A Study in Environment Monitoring System. Procedia Engineering, 41, 1204-1210. https://doi.org/10.1016/j.proeng.2012.07.302
|
[150]
|
Mamodiya, U. and Tiwari, N. (2023) Dual-Axis Solar Tracking System with Different Control Strategies for Improved Energy Efficiency. Computers and Electrical Engineering, 111, Article 108920. https://doi.org/10.1016/j.compeleceng.2023.108920
|
[151]
|
Salam, A. (2024) Internet of Things for Environmental Sustainability and Climate Change. In: Internet of Things, Springer, 33-69. https://doi.org/10.1007/978-3-031-62162-8_2
|
[152]
|
Kishorebabu, V. and Sravanthi, R. (2020) Real Time Monitoring of Environmental Parameters Using IoT. Wireless Personal Communications, 112, 785-808. https://doi.org/10.1007/s11277-020-07074-y
|
[153]
|
Antonanzas, J., Arbeloa-Ibero, M. and Quinn, J.C. (2019) Comparative Life Cycle Assessment of Fixed and Single Axis Tracking Systems for Photovoltaics. Journal of Cleaner Production, 240, Article 118016. https://doi.org/10.1016/j.jclepro.2019.118016
|
[154]
|
Hernández-Callejo, L., Gallardo-Saavedra, S. and Alonso-Gómez, V. (2019) A Review of Photovoltaic Systems: Design, Operation and Maintenance. Solar Energy, 188, 426-440. https://doi.org/10.1016/j.solener.2019.06.017
|
[155]
|
Manisha, P., Kumari, M., Sahdev, R.K. and Tiwari, S. (2022) A Review on Solar Photovoltaic System Efficiency Improving Technologies. Applied Solar Energy, 58, 54-75. https://doi.org/10.3103/s0003701x22010108
|
[156]
|
Peharz, G. and Bett, A.W. (2010) High Concentration Fresnel Lens Assemblies and Systems. In: Solar Cells and Their Applications, Wiley, 331-335.
|
[157]
|
Kumar, M., Panda, K.P., Rosas-Caro, J.C., Valderrabano-Gonzalez, A. and Panda, G. (2023) Comprehensive Review of Conventional and Emerging Maximum Power Point Tracking Algorithms for Uniformly and Partially Shaded Solar Photovoltaic Systems. IEEE Access, 11, 31778-31812. https://doi.org/10.1109/access.2023.3262502
|
[158]
|
Sabiha, M.A., Saidur, R., Mekhilef, S. and Mahian, O. (2015) Progress and Latest Developments of Evacuated Tube Solar Collectors. Renewable and Sustainable Energy Reviews, 51, 1038-1054. https://doi.org/10.1016/j.rser.2015.07.016
|
[159]
|
Hafez, A.Z., Yousef, A.M. and Harag, N.M. (2018) Solar Tracking Systems: Technologies and Trackers Drive Types—A Review. Renewable and Sustainable Energy Reviews, 91, 754-782. https://doi.org/10.1016/j.rser.2018.03.094
|
[160]
|
GhaffarianHoseini, A., Dahlan, N.D., Berardi, U., GhaffarianHoseini, A., Makaremi, N. and GhaffarianHoseini, M. (2013) Sustainable Energy Performances of Green Buildings: A Review of Current Theories, Implementations and Challenges. Renewable and Sustainable Energy Reviews, 25, 1-17. https://doi.org/10.1016/j.rser.2013.01.010
|
[161]
|
Saravanan, C., Panneerselvam, M.A. and Christopher, I.W. (2011) A Novel Low Cost Automatic Solar Tracking System. International Journal of Computer Applications, 31, 62-67.
|
[162]
|
Marshall, G.J., Mahony, C.P., Rhodes, M.J., Daniewicz, S.R., Tsolas, N. and Thompson, S.M. (2019) Thermal Management of Vehicle Cabins, External Surfaces, and Onboard Electronics: An Overview. Engineering, 5, 954-969. https://doi.org/10.1016/j.eng.2019.02.009
|
[163]
|
Ajukumar, V.N. and Gandhi, O.P. (2013) Evaluation of Green Maintenance Initiatives in Design and Development of Mechanical Systems Using an Integrated Approach. Journal of Cleaner Production, 51, 34-46. https://doi.org/10.1016/j.jclepro.2013.01.010
|
[164]
|
Panagoda, L.P.S.S., Sandeepa, R.A.H.T., Perera, W.A.V.T., Sandunika, D.M.I., Siriwardhana, S.M.G.T., Alwis, M.K.S.D. and Dilka, S.H.S. (2023) Advancements in Photovoltaic (PV) Technology for Solar Energy Generation. Journal of Research Technology & Engineering, 4, 30-72.
|
[165]
|
Yang, Z. and Xiao, Z. (2023) A Review of the Sustainable Development of Solar Photovoltaic Tracking System Technology. Energies, 16, Article 7768. https://doi.org/10.3390/en16237768
|
[166]
|
Hathaway, D.H. (2015) The Solar Cycle. Living Reviews in Solar Physics, 12, Article No. 4. https://doi.org/10.1007/lrsp-2015-4
|
[167]
|
Lai, Y., Chou, M. and Lin, P. (2010) Parameterization of Topographic Effect on Surface Solar Radiation. Journal of Geophysical Research: Atmospheres, 115, D01104. https://doi.org/10.1029/2009jd012305
|
[168]
|
Olson, M. and Rupper, S. (2019) Impacts of Topographic Shading on Direct Solar Radiation for Valley Glaciers in Complex Topography. The Cryosphere, 13, 29-40. https://doi.org/10.5194/tc-13-29-2019
|
[169]
|
Liu, M., Bárdossy, A., Li, J. and Jiang, Y. (2012) GIS-Based Modelling of Topography-Induced Solar Radiation Variability in Complex Terrain for Data Sparse Region. International Journal of Geographical Information Science, 26, 1281-1308. https://doi.org/10.1080/13658816.2011.641969
|
[170]
|
Haigh, J.D. (2007) The Sun and the Earth’s Climate. Living Reviews in Solar Physics, 4, Article No. 2. https://doi.org/10.12942/lrsp-2007-2
|
[171]
|
Benton, E.R. and Benton, E.V. (2001) Space Radiation Dosimetry in Low-Earth Orbit and Beyond. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184, 255-294. https://doi.org/10.1016/s0168-583x(01)00748-0
|
[172]
|
Kang, H., Kim, H., Hong, J., Zhang, R., Lee, M. and Hong, T. (2024) Harnessing Sunlight Beyond Earth: Sustainable Vision of Space-Based Solar Power Systems in Smart Grid. Renewable and Sustainable Energy Reviews, 202, Article 114644. https://doi.org/10.1016/j.rser.2024.114644
|
[173]
|
Aglietti, G.S., Redi, S., Tatnall, A.R. and Markvart, T. (2009) Harnessing High-Altitude Solar Power. IEEE Transactions on Energy Conversion, 24, 442-451. https://doi.org/10.1109/tec.2009.2016026
|
[174]
|
Gherboudj, I. and Ghedira, H. (2016) Assessment of Solar Energy Potential over the United Arab Emirates Using Remote Sensing and Weather Forecast Data. Renewable and Sustainable Energy Reviews, 55, 1210-1224. https://doi.org/10.1016/j.rser.2015.03.099
|
[175]
|
Yoneda, K., Suganuma, N., Yanase, R. and Aldibaja, M. (2019) Automated Driving Recognition Technologies for Adverse Weather Conditions. IATSS Research, 43, 253-262. https://doi.org/10.1016/j.iatssr.2019.11.005
|
[176]
|
Milidonis, K., Eliades, A., Grigoriev, V. and Blanco, M.J. (2023) Unmanned Aerial Vehicles (UAVS) in the Planning, Operation and Maintenance of Concentrating Solar Thermal Systems: A Review. Solar Energy, 254, 182-194. https://doi.org/10.1016/j.solener.2023.03.005
|
[177]
|
Yang, C., Sun, F., Zou, Y., Lv, Z., Xue, L., Jiang, C., et al. (2024) A Survey of Photovoltaic Panel Overlay and Fault Detection Methods. Energies, 17, Article 837. https://doi.org/10.3390/en17040837
|
[178]
|
Kelly, N.A. and Gibson, T.L. (2009) Improved Photovoltaic Energy Output for Cloudy Conditions with a Solar Tracking System. Solar Energy, 83, 2092-2102. https://doi.org/10.1016/j.solener.2009.08.009
|