[1]
|
IEA (2021) Global Energy-Related CO2 Emissions, 1990-2021. IEA. https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-1990-2021
|
[2]
|
Purohit, I., Purohit, P. and Shekhar, S. (2013) Evaluating the Potential of Concentrating Solar Power Generation in Northwestern India. Energy Policy, 62, 157-175. https://doi.org/10.1016/j.enpol.2013.06.069
|
[3]
|
Koroneos, C., Spachos, T. and Moussiopoulos, N. (2003) Exergy Analysis of Renewable Energy Sources. Renewable Energy, 28, 295-310. https://doi.org/10.1016/s0960-1481(01)00125-2
|
[4]
|
Mussard, M. (2017) Solar Energy under Cold Climatic Conditions: A Review. Renewable and Sustainable Energy Reviews, 74, 733-745. https://doi.org/10.1016/j.rser.2017.03.009
|
[5]
|
Prasad, A.A., Taylor, R.A. and Kay, M. (2017) Assessment of Solar and Wind Resource Synergy in Australia. Applied Energy, 190, 354-367. https://doi.org/10.1016/j.apenergy.2016.12.135
|
[6]
|
Cuce, E., Cuce, P.M., Guclu, T. and Besir, A.B. (2020) On the Use of Nanofluids in Solar Energy Applications. Journal of Thermal Science, 29, 513-534. https://doi.org/10.1007/s11630-020-1269-3
|
[7]
|
Ahmadi, M.H., Ghazvini, M., Sadeghzadeh, M., Alhuyi Nazari, M. and Ghalandari, M. (2019) Utilization of Hybrid Nanofluids in Solar Energy Applications: A Review. Nano-Structures & Nano-Objects, 20, Article ID: 100386. https://doi.org/10.1016/j.nanoso.2019.100386
|
[8]
|
Singh, T., Hussien, M.A.A., Al-Ansari, T., Saoud, K. and McKay, G. (2018) Critical Review of Solar Thermal Resources in GCC and Application of Nanofluids for Development of Efficient and Cost Effective CSP Technologies. Renewable and Sustainable Energy Reviews, 91, 708-719. https://doi.org/10.1016/j.rser.2018.03.050
|
[9]
|
IEA (2019) World Energy Outlook 2013-2035. http://www.iea.org/
|
[10]
|
Chavez Panduro, E.A., Finotti, F., Largiller, G. and Lervåg, K.Y. (2022) A Review of the Use of Nanofluids as Heat-Transfer Fluids in Parabolic-Trough Collectors. Applied Thermal Engineering, 211, Article ID: 118346. https://doi.org/10.1016/j.applthermaleng.2022.118346
|
[11]
|
Choi, S.U.S. and Eastman, J.A. (1995) Enhancing Thermal Conductivity of fluids with Nanoparticles. Argonne National Laboratory.
|
[12]
|
Elsheikh, A.H., Sharshir, S.W., Mostafa, M.E., Essa, F.A. and Ahmed Ali, M.K. (2018) Applications of Nanofluids in Solar Energy: A Review of Recent Advances. Renewable and Sustainable Energy Reviews, 82, 3483-3502. https://doi.org/10.1016/j.rser.2017.10.108
|
[13]
|
Gupta, S.K. and Pradhan, S. (2021) A Review of Recent Advances and the Role of Nanofluid in Solar Photovoltaic Thermal (PV/T) System. Materials Today: Proceedings, 44, 782-791. https://doi.org/10.1016/j.matpr.2020.10.708
|
[14]
|
Gupta, S.K. and Gupta, S. (2021) The Role of Nanofluids in Solar Thermal Energy: A Review of Recent Advances. Materials Today: Proceedings, 44, 401-412. https://doi.org/10.1016/j.matpr.2020.09.749
|
[15]
|
Babita, Sharma, S.K. and Gupta, S.M. (2016) Preparation and Evaluation of Stable Nanofluids for Heat Transfer Application: A Review. Experimental Thermal and Fluid Science, 79, 202-212. https://doi.org/10.1016/j.expthermflusci.2016.06.029
|
[16]
|
Leong, K.Y., Ku Ahmad, K.Z., Ong, H.C., Ghazali, M.J. and Baharum, A. (2017) Synthesis and Thermal Conductivity Characteristic of Hybrid Nanofluids—A Review. Renewable and Sustainable Energy Reviews, 75, 868-878. https://doi.org/10.1016/j.rser.2016.11.068
|
[17]
|
Ganvir, R.B., Walke, P.V. and Kriplani, V.M. (2017) Heat Transfer Characteristics in Nanofluid—A Review. Renewable and Sustainable Energy Reviews, 75, 451-460. https://doi.org/10.1016/j.rser.2016.11.010
|
[18]
|
Ahmad, S.H.A., Saidur, R., Mahbubul, I.M. and Al-Sulaiman, F.A. (2017) Optical Properties of Various Nanofluids Used in Solar Collector: A Review. Renewable and Sustainable Energy Reviews, 73, 1014-1030. https://doi.org/10.1016/j.rser.2017.01.173
|
[19]
|
Yang, L. and Du, K. (2017) A Comprehensive Review on Heat Transfer Characteristics of TiO2 Nanofluids. International Journal of Heat and Mass Transfer, 108, 11-31. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.086
|
[20]
|
Akilu, S., Sharma, K.V., Baheta, A.T. and Mamat, R. (2016) A Review of Thermophysical Properties of Water Based Composite Nanofluids. Renewable and Sustainable Energy Reviews, 66, 654-678. https://doi.org/10.1016/j.rser.2016.08.036
|
[21]
|
Zhang, X. and Li, J. (2022) A Review of Uncertainties in the Study of Heat Transfer Properties of Nanofluids. Heat and Mass Transfer, 59, 621-653. https://doi.org/10.1007/s00231-022-03276-1
|
[22]
|
Zhu, Z., Qi, H., Niu, Z., Shi, J., Gao, B. and Ren, Y. (2023) Accurate Estimation of the Optical Properties of Nanofluids for Solar Energy Harvesting Using the Null-Collision Forward Monte Carlo Method. Renewable Energy, 211, 140-154. https://doi.org/10.1016/j.renene.2023.04.130
|
[23]
|
Ahmed, S.E., Arafa, A.A.M. and Hussein, S.A. (2023) Bioconvective Flow of a Variable Properties Hybrid Nanofluid over a Spinning Disk with Arrhenius Activation Energy, Soret and Dufour Impacts. Numerical Heat Transfer, Part A: Applications, 85, 900-922. https://doi.org/10.1080/10407782.2023.2193709
|
[24]
|
Ramasamy, D., Ranjith, R., Ramachandran, T., Murugapoopathi, S. and Surendarnath, S. (2023) Optimisation of Flow and Fluid Properties of Nanofluids to Enhance the Performance of Solar Flat Plate Collector Using MCDM Technique. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. https://doi.org/10.1177/09544089221150738
|
[25]
|
Joudeh, N. and Linke, D. (2022) Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists. Journal of Nanobiotechnology, 20, Article No. 262. https://doi.org/10.1186/s12951-022-01477-8
|
[26]
|
El-Masry, J.F., Bou-Hamdan, K.F., Abbas, A.H. and Martyushev, D.A. (2023) A Comprehensive Review on Utilizing Nanomaterials in Enhanced Oil Recovery Applications. Energies, 16, Article 691. https://doi.org/10.3390/en16020691
|
[27]
|
Mageswari, A., Srinivasan, R., Subramanian, P., Ramesh, N. and Gothandam, K.M. (2016) Nanomaterials: Classification, Biological Synthesis and Characterization. In: Ranjan, S., Dasgupta, N. and Lichtfouse, E., Eds., Nanoscience in Food and Agriculture 3, Springer, 31-71. https://doi.org/10.1007/978-3-319-48009-1_2
|
[28]
|
Strambeanu, N., Demetrovici, L., Dragos, D. and Lungu, M. (2014) Nanoparticles: Definition, Classification and General Physical Properties. In: Lungu, M., Neculae, A., Bunoiu, M. and Biris, C., Eds., Nanoparticles’ Promises and Risks, Springer, 3-8. https://doi.org/10.1007/978-3-319-11728-7_1
|
[29]
|
Patel, A., Patra, F., Shah, N. and Khedkar, C. (2018) Application of Nanotechnology in the Food Industry: Present Status and Future Prospects. In: Grumezescu, A.M. and Holban, A.M., Eds., Impact of Nanoscience in the Food Industry, Elsevier, 1-27. https://doi.org/10.1016/b978-0-12-811441-4.00001-7
|
[30]
|
Keykhosravi, A., Vanani, M.B. and Aghayari, C. (2021) Tio2 Nanoparticle-Induced Xanthan Gum Polymer for EOR: Assessing the Underlying Mechanisms in Oil-Wet Carbonates. Journal of Petroleum Science and Engineering, 204, Article ID: 108756. https://doi.org/10.1016/j.petrol.2021.108756
|
[31]
|
Selvakumar, N., Sivaraj, M. and Muthuraman, S. (2016) Microstructure Characterization and Thermal Properties of Al-TiC Sintered Nano Composites. Applied Thermal Engineering, 107, 625-632. https://doi.org/10.1016/j.applthermaleng.2016.07.005
|
[32]
|
Tokonami, S. (2021) External-Field-Induced Assembly for Biological Analytical Chemistry. Analytical Sciences, 37, 395-396. https://doi.org/10.2116/analsci.highlights2103
|
[33]
|
Vivien, A., Guillaumont, M., Meziane, L., Salzemann, C., Aubert, C., Halbert, S., et al. (2019) Role of Oleylamine Revisited: An Original Disproportionation Route to Monodispersed Cobalt and Nickel Nanocrystals. Chemistry of Materials, 31, 960-968. https://doi.org/10.1021/acs.chemmater.8b04435
|
[34]
|
Wilson, A. (2012) With Functionalization, Nanodiamonds May Increase Durability of PDC Cutters. Journal of Petroleum Technology, 64, 134-137. https://doi.org/10.2118/1212-0134-jpt
|
[35]
|
Rafiee, R. and Shahzadi, R. (2018) Mechanical Properties of Nanoclay and Nanoclay Reinforced Polymers: A Review. Polymer Composites, 40, 431-445. https://doi.org/10.1002/pc.24725
|
[36]
|
Saha, S., Bansal, S. and Khanuja, M. (2022) Classification of Nanomaterials and Their Physical and Chemical Nature. In: Ghorbanpour, M. and Shahid, M.A., Eds., Nano-Enabled Agrochemicals in Agriculture, Elsevier, 7-34. https://doi.org/10.1016/b978-0-323-91009-5.00001-x
|
[37]
|
Singh, D., Singh, S., Sahu, J., Srivastava, S. and Singh, M.R. (2014) Ceramic Nanoparticles: Recompense, Cellular Uptake and Toxicity Concerns. Artificial Cells, Nanomedicine, and Biotechnology, 44, 401-409. https://doi.org/10.3109/21691401.2014.955106
|
[38]
|
Shnoudeh, A.J., Hamad, I., Abdo, R.W., Qadumii, L., Jaber, A.Y., Surchi, H.S., et al. (2019) Synthesis, Characterization, and Applications of Metal Nanoparticles. In: Tekade, R.K., Ed., Biomaterials and Bionanotechnology, Elsevier, 527-612. https://doi.org/10.1016/b978-0-12-814427-5.00015-9
|
[39]
|
Sajid, M. and Płotka-Wasylka, J. (2020) Nanoparticles: Synthesis, Characteristics, and Applications in Analytical and Other Sciences. Microchemical Journal, 154, Article ID: 104623. https://doi.org/10.1016/j.microc.2020.104623
|
[40]
|
Asadian, E., Ghalkhani, M. and Shahrokhian, S. (2019) Electrochemical Sensing Based on Carbon Nanoparticles: A Review. Sensors and Actuators B: Chemical, 293, 183-209. https://doi.org/10.1016/j.snb.2019.04.075
|
[41]
|
Dantas de Oliveira, A. and Augusto Gonçalves Beatrice, C. (2019) Polymer Nanocomposites with Different Types of Nanofiller. In: Sivasankaran, S., Ed., Nanocomposites—Recent Evolutions, IntechOpen. https://doi.org/10.5772/intechopen.81329
|
[42]
|
Kale, S.N. and Deore, S.L. (2016) Emulsion Micro Emulsion and Nano Emulsion: A Review. Systematic Reviews in Pharmacy, 8, 39-47. https://doi.org/10.5530/srp.2017.1.8
|
[43]
|
Roduner, E. (2006) Size Matters: Why Nanomaterials Are Different. Chemical Society Reviews, 35, 583-592. https://doi.org/10.1039/b502142c
|
[44]
|
Lines, M.G. (2008) Nanomaterials for Practical Functional Uses. Journal of Alloys and Compounds, 449, 242-245. https://doi.org/10.1016/j.jallcom.2006.02.082
|
[45]
|
Gade, A., Ingle, A., Whiteley, C. and Rai, M. (2010) Mycogenic Metal Nanoparticles: Progress and Applications. Biotechnology Letters, 32, 593-600. https://doi.org/10.1007/s10529-009-0197-9
|
[46]
|
Wu, Q., Miao, W., Zhang, Y., Gao, H. and Hui, D. (2020) Mechanical Properties of Nanomaterials: A Review. Nanotechnology Reviews, 9, 259-273. https://doi.org/10.1515/ntrev-2020-0021
|
[47]
|
Pithawalla, Y.B., El-Shall, M.S., Deevi, S.C., Ström, V. and Rao, K.V. (2001) Synthesis of Magnetic Intermetallic Feal Nanoparticles from a Non-Magnetic Bulk Alloy. The Journal of Physical Chemistry B, 105, 2085-2090. https://doi.org/10.1021/jp002354i
|
[48]
|
Andrievski, R.A. (2013) Review of Thermal Stability of Nanomaterials. Journal of Materials Science, 49, 1449-1460. https://doi.org/10.1007/s10853-013-7836-1
|
[49]
|
Qiu, L., Zhu, N., Feng, Y., Michaelides, E.E., Żyła, G., Jing, D., et al. (2020) A Review of Recent Advances in Thermophysical Properties at the Nanoscale: From Solid State to Colloids. Physics Reports, 843, 1-81. https://doi.org/10.1016/j.physrep.2019.12.001
|
[50]
|
Hori, H., Teranishi, T., Nakae, Y., Seino, Y., Miyake, M. and Yamada, S. (1999) Anomalous Magnetic Polarization Effect of Pd and Au Nanoparticles. Physics Letters A, 263, 406-410. https://doi.org/10.1016/s0375-9601(99)00742-2
|
[51]
|
McCurrie, R.A. (1994) Ferromagnetic Materials: Structure and Properties. Academic Press.
|
[52]
|
Jun, Y., Seo, J. and Cheon, J. (2008) Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences. Accounts of Chemical Research, 41, 179-189. https://doi.org/10.1021/ar700121f
|
[53]
|
Khlebtsov, N.G. and Dykman, L.A. (2010) Optical Properties and Biomedical Applications of Plasmonic Nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 1-35. https://doi.org/10.1016/j.jqsrt.2009.07.012
|
[54]
|
Kreibig, U. and Vollmer, M. (1995) Theoretical Considerations. Springer Series in Materials Science, 25, 13-201. https://doi.org/10.1007/978-3-662-09109-8_2
|
[55]
|
Lee, B.J., Park, K., Walsh, T. and Xu, L. (2012) Radiative Heat Transfer Analysis in Plasmonic Nanofluids for Direct Solar Thermal Absorption. Journal of Solar Energy Engineering, 134, Article ID: 021009. https://doi.org/10.1115/1.4005756
|
[56]
|
Genc, A.M., Ezan, M.A. and Turgut, A. (2018) Thermal Performance of a Nanofluid-Based Flat Plate Solar Collector: A Transient Numerical Study. Applied Thermal Engineering, 130, 395-407. https://doi.org/10.1016/j.applthermaleng.2017.10.166
|
[57]
|
Otanicar, T.P., Phelan, P.E., Prasher, R.S., Rosengarten, G. and Taylor, R.A. (2010) Nanofluid-Based Direct Absorption Solar Collector. Journal of Renewable and Sustainable Energy, 2, Article ID: 033102. https://doi.org/10.1063/1.3429737
|
[58]
|
Mahamude, A., Harun, W., Kadirgama, K., Ramasamy, D., Farhana, K., Saleh, K., et al. (2022) Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton. Energies, 15, Article 2309. https://doi.org/10.3390/en15072309
|
[59]
|
Yousefi, T., Veysi, F., Shojaeizadeh, E. and Zinadini, S. (2012) An Experimental Investigation on the Effect of Al2O3-H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors. Renewable Energy, 39, 293-298. https://doi.org/10.1016/j.renene.2011.08.056
|
[60]
|
Kim, H., Kim, J. and Cho, H. (2017) Experimental Study on Performance Improvement of U-Tube Solar Collector Depending on Nanoparticle Size and Concentration of Al2O3 Nanofluid. Energy, 118, 1304-1312. https://doi.org/10.1016/j.energy.2016.11.009
|
[61]
|
Chaji, H., Ajabshirchi, Y., Esmaeilzadeh, E., Zeinali Heris, S., Hedayatizadeh, M. and Kahani, M. (2013) Experimental Study on Thermal Efficiency of Flat Plate Solar Collector Using TiO2/Water Nanofluid. Modern Applied Science, 7, 60-69. https://doi.org/10.5539/mas.v7n10p60
|
[62]
|
Faizal, M., Saidur, R., Mekhilef, S. and Alim, M.A. (2013) Energy, Economic and Environmental Analysis of Metal Oxides Nanofluid for Flat-Plate Solar Collector. Energy Conversion and Management, 76, 162-168. https://doi.org/10.1016/j.enconman.2013.07.038
|
[63]
|
Mahian, O., Kianifar, A., Sahin, A.Z. and Wongwises, S. (2014) Performance Analysis of a Minichannel-Based Solar Collector Using Different Nanofluids. Energy Conversion and Management, 88, 129-138. https://doi.org/10.1016/j.enconman.2014.08.021
|
[64]
|
Tong, Y., Kim, J. and Cho, H. (2015) Effects of Thermal Performance of Enclosed-Type Evacuated U-Tube Solar Collector with Multi-Walled Carbon Nanotube/Water Nanofluid. Renewable Energy, 83, 463-473. https://doi.org/10.1016/j.renene.2015.04.042
|
[65]
|
Sabiha, M.A., Saidur, R., Hassani, S., Said, Z. and Mekhilef, S. (2015) Energy Performance of an Evacuated Tube Solar Collector Using Single Walled Carbon Nanotubes Nanofluids. Energy Conversion and Management, 105, 1377-1388. https://doi.org/10.1016/j.enconman.2015.09.009
|
[66]
|
Noghrehabadi, A., Hajidavalloo, E. and Moravej, M. (2016) An Experimental Investigation on the Performance of a Symmetric Conical Solar Collector Using SiO2/Water Nanofluid. Transport Phenomena in Nano and Micro Scales, 5, 23-29.
|
[67]
|
Khullar, V., Tyagi, H., Phelan, P.E., Otanicar, T.P., Singh, H. and Taylor, R.A. (2012) Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector. Journal of Nanotechnology in Engineering and Medicine, 3, Article ID: 031003. https://doi.org/10.1115/1.4007387
|
[68]
|
Wang, Y., Xu, J., Liu, Q., Chen, Y. and Liu, H. (2016) Performance Analysis of a Parabolic Trough Solar Collector Using Al2O3/synthetic Oil Nanofluid. Applied Thermal Engineering, 107, 469-478. https://doi.org/10.1016/j.applthermaleng.2016.06.170
|
[69]
|
Ghasemi, S.E. and Mehdizadeh Ahangar, G.R. (2014) Numerical Analysis of Performance of Solar Parabolic Trough Collector with Cu-Water Nanofluid. International Journal of Nano Dimension, 5, 233-240.
|
[70]
|
Menbari, A., Alemrajabi, A.A. and Rezaei, A. (2016) Heat Transfer Analysis and the Effect of CuO/Water Nanofluid on Direct Absorption Concentrating Solar Collector. Applied Thermal Engineering, 104, 176-183. https://doi.org/10.1016/j.applthermaleng.2016.05.064
|
[71]
|
Subbiah, M., Natarajan, S. and Murugan, S. (2024) Analyze the Effects of Implementing a Solar Thermal Hot Water System on Oman’s Economy and Environmental Factors. Open Access Library Journal, 11, 1-17. https://doi.org/10.4236/oalib.1111127
|
[72]
|
Hordy, N., Rabilloud, D., Meunier, J. and Coulombe, S. (2015) A Stable Carbon Nanotube Nanofluid for Latent Heat‐driven Volumetric Absorption Solar Heating Applications. Journal of Nanomaterials, 2015, Article ID: 850217. https://doi.org/10.1155/2015/850217
|
[73]
|
Bouslimi, J., Alkathiri, A.A., Althagafi, T.M., Jamshed, W. and Eid, M.R. (2022) Thermal Properties, Flow and Comparison between Cu and Ag Nanoparticles Suspended in Sodium Alginate as Sutterby Nanofluids in Solar Collector. Case Studies in Thermal Engineering, 39, Article ID: 102358. https://doi.org/10.1016/j.csite.2022.102358
|
[74]
|
Suman, S., Khan, M.K. and Pathak, M. (2015) Performance Enhancement of Solar Collectors—A Review. Renewable and Sustainable Energy Reviews, 49, 192-210. https://doi.org/10.1016/j.rser.2015.04.087
|
[75]
|
Gupta, S.K. and Dixit, S. (2021) Progress and Application of Nanofluids in Solar Collectors: An Overview of Recent Advances. Materials Today: Proceedings, 44, 250-259. https://doi.org/10.1016/j.matpr.2020.09.462
|
[76]
|
Norton, B. (2013) Flat-Plate and Evacuated Tube Collectors. In: Norton, B., Ed., Harnessing Solar Heat, Springer, 91-113. https://doi.org/10.1007/978-94-007-7275-5_5
|
[77]
|
Muhammad, M.J., Muhammad, I.A., Che Sidik, N.A. and Muhammad Yazid, M.N.A.W. (2016) Thermal Performance Enhancement of Flat-Plate and Evacuated Tube Solar Collectors Using Nanofluid: A Review. International Communications in Heat and Mass Transfer, 76, 6-15. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.009
|
[78]
|
Zambolin, E. and Del Col, D. (2010) Experimental Analysis of Thermal Performance of Flat Plate and Evacuated Tube Solar Collectors in Stationary Standard and Daily Conditions. Solar Energy, 84, 1382-1396. https://doi.org/10.1016/j.solener.2010.04.020
|
[79]
|
Tong, Y., Kim, J. and Cho, H. (2015) Effects of Thermal Performance of Enclosed-Type Evacuated U-Tube Solar Collector with Multi-Walled Carbon Nanotube/Water Nanofluid. Renewable Energy, 83, 463-473. https://doi.org/10.1016/j.renene.2015.04.042
|
[80]
|
Sabiha, M.A., Saidur, R., Hassani, S., Said, Z. and Mekhilef, S. (2015) Energy Performance of an Evacuated Tube Solar Collector Using Single Walled Carbon Nanotubes Nanofluids. Energy Conversion and Management, 105, 1377-1388. https://doi.org/10.1016/j.enconman.2015.09.009
|
[81]
|
Liu, Z., Hu, R., Lu, L., Zhao, F. and Xiao, H. (2013) Thermal Performance of an Open Thermosyphon Using Nanofluid for Evacuated Tubular High Temperature Air Solar Collector. Energy Conversion and Management, 73, 135-143. https://doi.org/10.1016/j.enconman.2013.04.010
|
[82]
|
Kumar, S. and Tiwari, A.K. (2022) Performance Evaluation of Evacuated Tube Solar Collector Using Boron Nitride Nanofluid. Sustainable Energy Technologies and Assessments, 53, Article ID: 102466. https://doi.org/10.1016/j.seta.2022.102466
|
[83]
|
Jia, Y., Alva, G. and Fang, G. (2019) Development and Applications of Photovoltaic-Thermal Systems: A Review. Renewable and Sustainable Energy Reviews, 102, 249-265. https://doi.org/10.1016/j.rser.2018.12.030
|
[84]
|
Guo, J., Lin, S., Bilbao, J.I., White, S.D. and Sproul, A.B. (2017) A Review of Photovoltaic Thermal (PV/T) Heat Utilisation with Low Temperature Desiccant Cooling and Dehumidification. Renewable and Sustainable Energy Reviews, 67, 1-14. https://doi.org/10.1016/j.rser.2016.08.056
|
[85]
|
Crisostomo, F., Hjerrild, N., Mesgari, S., Li, Q. and Taylor, R.A. (2017) A Hybrid PV/T Collector Using Spectrally Selective Absorbing Nanofluids. Applied Energy, 193, 1-14. https://doi.org/10.1016/j.apenergy.2017.02.028
|
[86]
|
Suresh, A.K., Khurana, S., Nandan, G., Dwivedi, G. and Kumar, S. (2018) Role on Nanofluids in Cooling Solar Photovoltaic Cell to Enhance Overall Efficiency. Materials Today: Proceedings, 5, 20614-20620. https://doi.org/10.1016/j.matpr.2018.06.442
|
[87]
|
Diwania, S., Siddiqui, A.S., Agrawal, S. and Kumar, R. (2021) Modeling and Assessment of the Thermo-Electrical Performance of a Photovoltaic-Thermal (PVT) System Using Different Nanofluids. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43, Article No. 190. https://doi.org/10.1007/s40430-021-02909-6
|
[88]
|
Grosu, Y., Nithiyanantham, U., González-Fernández, L. and Faik, A. (2019) Preparation and Characterization of Nanofluids Based on Molten Salts with Enhanced Thermophysical Properties for Thermal Energy Storage at Concentrate Solar Power. AIP Conference Proceedings, 2126, Article ID: 200021. https://doi.org/10.1063/1.5117736
|
[89]
|
Jiang, L., Gao, L. and Sun, J. (2003) Production of Aqueous Colloidal Dispersions of Carbon Nanotubes. Journal of Colloid and Interface Science, 260, 89-94. https://doi.org/10.1016/s0021-9797(02)00176-5
|
[90]
|
Clogston, J.D. and Patri, A.K. (2010) Zeta Potential Measurement. In: McNeil, S., Ed., Characterization of Nanoparticles Intended for Drug Delivery, Humana Press, 63-70. https://doi.org/10.1007/978-1-60327-198-1_6
|
[91]
|
Mahbubul, I.M., Saidur, R., Amalina, M.A., Elcioglu, E.B. and Okutucu-Ozyurt, T. (2015) Effective Ultrasonication Process for Better Colloidal Dispersion of Nanofluid. Ultrasonics Sonochemistry, 26, 361-369. https://doi.org/10.1016/j.ultsonch.2015.01.005
|
[92]
|
Sarkar, M.N.I., Sifat, A.I., Reza, S.M.S. and Sadique, M.S. (2017) A Review of Optimum Parameter Values of a Passive Solar Still and a Design for Southern Bangladesh. Renewables: Wind, Water, and Solar, 4, Article No. 1. https://doi.org/10.1186/s40807-017-0038-8
|
[93]
|
Subbiah, M., Natarajan, S., Murugan, S. and Ayyappan K. (2024) Implementation of a Solar-Thermal Hybrid Air Conditioning System in Muscat for Energy Conservation. Thermal Science and Engineering, 7, Article ID: 10996. https://doi.org/10.24294/tse10996
|
[94]
|
Iqbal, A., Mahmoud, M.S., Sayed, E.T., Elsaid, K., Abdelkareem, M.A., Alawadhi, H., et al. (2021) Evaluation of the Nanofluid-Assisted Desalination through Solar Stills in the Last Decade. Journal of Environmental Management, 277, Article ID: 111415. https://doi.org/10.1016/j.jenvman.2020.111415
|
[95]
|
Sharshir, S.W., Peng, G., Wu, L., Yang, N., Essa, F.A., Elsheikh, A.H., et al. (2017) Enhancing the Solar Still Performance Using Nanofluids and Glass Cover Cooling: Experimental Study. Applied Thermal Engineering, 113, 684-693. https://doi.org/10.1016/j.applthermaleng.2016.11.085
|
[96]
|
Kabeel, A.E., Omara, Z.M. and Essa, F.A. (2014) Improving the Performance of Solar Still by Using Nanofluids and Providing Vacuum. Energy Conversion and Management, 86, 268-274. https://doi.org/10.1016/j.enconman.2014.05.050
|
[97]
|
Elango, T., Kannan, A. and Kalidasa Murugavel, K. (2015) Performance Study on Single Basin Single Slope Solar Still with Different Water Nanofluids. Desalination, 360, 45-51. https://doi.org/10.1016/j.desal.2015.01.004
|
[98]
|
Mahian, O., Kianifar, A., Heris, S.Z., Wen, D., Sahin, A.Z. and Wongwises, S. (2017) Nanofluids Effects on the Evaporation Rate in a Solar Still Equipped with a Heat Exchanger. Nano Energy, 36, 134-155. https://doi.org/10.1016/j.nanoen.2017.04.025
|
[99]
|
Kabeel, A.E., Omara, Z.M. and Essa, F.A. (2014) Enhancement of Modified Solar Still Integrated with External Condenser Using Nanofluids: An Experimental Approach. Energy Conversion and Management, 78, 493-498. https://doi.org/10.1016/j.enconman.2013.11.013
|